Skip to main content

05.12.2024

Edge Based Intelligent Secured Vehicle Filtering and Tracking System Using YOLO and EasyOCR

verfasst von: K. N. Apinaya Prethi, Satheeshkumar Palanisamy, S. Nithya, Ayodeji Olalekan Salau

Erschienen in: International Journal of Intelligent Transportation Systems Research

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Edge computing is used in intelligent transportation systems to handle data faster and with less delay. Implementing the proposed system in edge computing improves security in intelligent transportation systems. Video surveillance has played an essential role in maintaining transportation systems, security monitoring, and surveillance. In recent times, vehicles involved in crimes, theft, and violating traffic rules are on the increase. Monitoring vehicles using traditional methods is time-consuming and an exhausting process. Existing systems make use of methods which only detect and trace a particular vehicle, which is inefficient for finding and tracking multiple vehicles simultaneously. In this paper, the proposed method generates a secured road map of vehicle travel using Google Maps. The proposed approach was incorporated into the electric eye, which employs masking for color detection and YOLOV5 was used to recognize text. The frames are taken from the video and processed to obtain the vehicle’s license plate number. Localization, character, and vehicle color identification are used which helps in locating the vehicle faster.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Khan, K., Imran, A., Rehman, H.Z.U., et al.: Performance enhancement method for multiple license plate recognition in challenging environments. J Image Video Proc. (2021). 30 (2021) Khan, K., Imran, A., Rehman, H.Z.U., et al.: Performance enhancement method for multiple license plate recognition in challenging environments. J Image Video Proc. (2021). 30 (2021)
3.
Zurück zum Zitat Silva, S.M., Jung, C.R.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71 (2020) Silva, S.M., Jung, C.R.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71 (2020)
4.
Zurück zum Zitat Tariq, A., Khan, M.Z., Khan, M.U.G.: Real time Vehicle Detection and Colour Recognition using tuned features of Faster-RCNN. In: 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), pp. 262–267, April 2021 Tariq, A., Khan, M.Z., Khan, M.U.G.: Real time Vehicle Detection and Colour Recognition using tuned features of Faster-RCNN. In: 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), pp. 262–267, April 2021
5.
Zurück zum Zitat Maungmai, W., Nuthong, C.: Vehicle classification with deep learning. In: 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), pp. 294–298 (2019) Maungmai, W., Nuthong, C.: Vehicle classification with deep learning. In: 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), pp. 294–298 (2019)
6.
Zurück zum Zitat Rayudu, S., Madhurim R. D., Nikhil, M., Bhukya, S.: Automatic license plate recognition with YOLOv5 and easy-OCR method. IJIRT. 9(1) (2022). ISSN: 2349–6002 Rayudu, S., Madhurim R. D., Nikhil, M., Bhukya, S.: Automatic license plate recognition with YOLOv5 and easy-OCR method. IJIRT. 9(1) (2022). ISSN: 2349–6002
7.
Zurück zum Zitat Seong-O, S., Imtiaz, R., Siddiq, A., Rasool Khan, I.: License plates detection and recognition with multi - exposure images. Int. J. Adv. Comput. Sci. Appl. (IJACSA). 13(4) (2022) Seong-O, S., Imtiaz, R., Siddiq, A., Rasool Khan, I.: License plates detection and recognition with multi - exposure images. Int. J. Adv. Comput. Sci. Appl. (IJACSA). 13(4) (2022)
8.
Zurück zum Zitat Eftikhar Nabizada, D., Kaur: A real time vehicle’s license plate recognition system using Yolov5 model and transfer learning. Int. J. Res. Publ. Rev. 3(9), 42–47 (2022) Eftikhar Nabizada, D., Kaur: A real time vehicle’s license plate recognition system using Yolov5 model and transfer learning. Int. J. Res. Publ. Rev. 3(9), 42–47 (2022)
9.
Zurück zum Zitat Li, D.L., Prasad, M., Liu, C.-L., Lin, C.-T.: Multi-view vehicle detection based on fusion part model with active learning. IEEE Trans. Intell. Transp. Syst. 22(5), 3146–3157 (2021) Li, D.L., Prasad, M., Liu, C.-L., Lin, C.-T.: Multi-view vehicle detection based on fusion part model with active learning. IEEE Trans. Intell. Transp. Syst. 22(5), 3146–3157 (2021)
10.
Zurück zum Zitat Zhao, J., Hao, S., Dai, C., Zhang, H., Zhao, L., Ji, Z., Ivan Ganchev: Improved Vision-Based Veh. Detect. Classif. Optimized YOLOv4 IEEE Access. 10, 8590–8603 (2022) Zhao, J., Hao, S., Dai, C., Zhang, H., Zhao, L., Ji, Z., Ivan Ganchev: Improved Vision-Based Veh. Detect. Classif. Optimized YOLOv4 IEEE Access. 10, 8590–8603 (2022)
11.
Zurück zum Zitat Wang, Y., Ban, X., Wang, H., Wu, D., Wang, H., Yang, S., Liu, S., Lai, J.: Detection and classification of moving vehicle from video using multiple spatio-temporal features. IEEE Access. 7, 80287–80299 (2019)CrossRef Wang, Y., Ban, X., Wang, H., Wu, D., Wang, H., Yang, S., Liu, S., Lai, J.: Detection and classification of moving vehicle from video using multiple spatio-temporal features. IEEE Access. 7, 80287–80299 (2019)CrossRef
12.
Zurück zum Zitat Pillai, U.K.K., Valles, D.: Vehicle type and color classification and detection for amber and silver alert emergencies using machine learning. In: 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–5. IEEE (2020) Pillai, U.K.K., Valles, D.: Vehicle type and color classification and detection for amber and silver alert emergencies using machine learning. In: 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–5. IEEE (2020)
13.
Zurück zum Zitat Apinaya Prethi, K.N., Sangeetha, M.: A multi-objective optimization of resource management and minimum batch VM migration for prioritized task allocation in fog-edge-cloud computing. J. Intell. Fuzzy Syst. 43(5), 5985–5995 (2022)CrossRef Apinaya Prethi, K.N., Sangeetha, M.: A multi-objective optimization of resource management and minimum batch VM migration for prioritized task allocation in fog-edge-cloud computing. J. Intell. Fuzzy Syst. 43(5), 5985–5995 (2022)CrossRef
14.
Zurück zum Zitat Nithya, S., Sangeetha, M., Prethi, K.N.A., Sahoo, K.S., Panda, S.K., Amir, H.: Gandomi. SDCF: A software-defined cyber foraging framework for cloudlet environment. IEEE Trans. Netw. Serv. Manage. 17(4), 2423–2435 (2020)CrossRef Nithya, S., Sangeetha, M., Prethi, K.N.A., Sahoo, K.S., Panda, S.K., Amir, H.: Gandomi. SDCF: A software-defined cyber foraging framework for cloudlet environment. IEEE Trans. Netw. Serv. Manage. 17(4), 2423–2435 (2020)CrossRef
15.
Zurück zum Zitat Hsieh, J.-W., Chen, L.-C., Chen, S.-Y., Chen, D.-Y., Alghyaline, S., Chiang, H.-F.: Vehicle color classification under different lighting conditions through color correction. IEEE Sens. J. 15(2), 971–983 (Feb 2015) Hsieh, J.-W., Chen, L.-C., Chen, S.-Y., Chen, D.-Y., Alghyaline, S., Chiang, H.-F.: Vehicle color classification under different lighting conditions through color correction. IEEE Sens. J. 15(2), 971–983 (Feb 2015)
16.
Zurück zum Zitat AngurajKandasamy, S.R., KittiBurri, P., SatheeshkumarPalanisamy, K., Kavin Kumar, A.D., Baladhandapani, S., AlemayehuMamo: Defected circular-cross stub copper metal printed pentaband antenna. Adv. Mater. Sci. Eng. 2022, Article ID 6009092, 10 (2022). https://doi.org/10.1155/2022/6009092 AngurajKandasamy, S.R., KittiBurri, P., SatheeshkumarPalanisamy, K., Kavin Kumar, A.D., Baladhandapani, S., AlemayehuMamo: Defected circular-cross stub copper metal printed pentaband antenna. Adv. Mater. Sci. Eng. 2022, Article ID 6009092, 10 (2022). https://​doi.​org/​10.​1155/​2022/​6009092
17.
Zurück zum Zitat Sam, P.J.C., Surendar, U., Ekpe, U.M., Saravanan, M., Satheesh Kumar, P. A Low-profile compact EBG integrated circular monopole antenna for wearable medical application. In: Malik P.K., Lu J., Madhav B.T.P., Kalkhambkar G., Amit S. Smart Antennas. EAI/Springer Innovations in Communication and Computing. Springer: Cham (2022). https://doi.org/10.1007/978-3-030-76636-8_23 Sam, P.J.C., Surendar, U., Ekpe, U.M., Saravanan, M., Satheesh Kumar, P. A Low-profile compact EBG integrated circular monopole antenna for wearable medical application. In: Malik P.K., Lu J., Madhav B.T.P., Kalkhambkar G., Amit S. Smart Antennas. EAI/Springer Innovations in Communication and Computing. Springer: Cham (2022). https://​doi.​org/​10.​1007/​978-3-030-76636-8_​23
18.
Zurück zum Zitat Satheesh Kumar, P., Jeevitha, M. Diagnosing COVID-19 virus in the cardiovascular system using ANN. In: Oliva, D., Hassan, S.A., Mohamed, A (eds.) Artificial Intelligence for COVID-19. Studies in Systems, Decision and Control, vol 358. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69744-0_5 Satheesh Kumar, P., Jeevitha, M. Diagnosing COVID-19 virus in the cardiovascular system using ANN. In: Oliva, D., Hassan, S.A., Mohamed, A (eds.) Artificial Intelligence for COVID-19. Studies in Systems, Decision and Control, vol 358. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-69744-0_​5
19.
Zurück zum Zitat Pathak, A.R., Pandey, M., Rautaray, S.: Deep learning approaches for detecting objects from images: a review. In: Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017, pp. 491–499 (2018) Pathak, A.R., Pandey, M., Rautaray, S.: Deep learning approaches for detecting objects from images: a review. In: Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017, pp. 491–499 (2018)
20.
Zurück zum Zitat Khodarahmi, M., Maihami, V.: A review on Kalman filter models. Arch. Comput. Methods Eng. 30(1), 727–747 (2023)MathSciNetCrossRef Khodarahmi, M., Maihami, V.: A review on Kalman filter models. Arch. Comput. Methods Eng. 30(1), 727–747 (2023)MathSciNetCrossRef
21.
Zurück zum Zitat Lv, Z.: Security of internet of things edge devices. Software: Pract. Experience. 51(12), 2446–2456 (2021) Lv, Z.: Security of internet of things edge devices. Software: Pract. Experience. 51(12), 2446–2456 (2021)
22.
24.
Zurück zum Zitat De Assis, M.V., Carvalho, L.F., Rodrigues, J.J., Lloret, J., Proença, M.L. Jr.: Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 86, 106738 (2020)CrossRef De Assis, M.V., Carvalho, L.F., Rodrigues, J.J., Lloret, J., Proença, M.L. Jr.: Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 86, 106738 (2020)CrossRef
25.
Zurück zum Zitat Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of Yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)CrossRef Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of Yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)CrossRef
26.
Zurück zum Zitat Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: A review. IEEE Trans. Neural Networks Learn. Syst. 30(11), 3212–3232 (2019)CrossRef Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: A review. IEEE Trans. Neural Networks Learn. Syst. 30(11), 3212–3232 (2019)CrossRef
28.
Zurück zum Zitat Palanisamy, S., BalakumaranThangaraju, O.I., Khalaf, Y.A., SalehAlghamdi, and FawazAlassery: A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies 14(19), 6204 (2021). https://doi.org/10.3390/en14196204 Palanisamy, S., BalakumaranThangaraju, O.I., Khalaf, Y.A., SalehAlghamdi, and FawazAlassery: A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies 14(19), 6204 (2021). https://​doi.​org/​10.​3390/​en14196204
29.
Zurück zum Zitat Reisswig, C., Katti, A.R., Spinaci, M., Höhne, J.: Chargrid-OCR: End-to-end trainable optical character recognition through semantic segmentation and object detection. In: Workshop on Document Intelligence at NeurIPS 2019. Reisswig, C., Katti, A.R., Spinaci, M., Höhne, J.: Chargrid-OCR: End-to-end trainable optical character recognition through semantic segmentation and object detection. In: Workshop on Document Intelligence at NeurIPS 2019.
30.
Zurück zum Zitat Han, B.G., Lee, J.T., Lim, K.T., Choi, D.H.: License plate image generation using generative adversarial networks for end-to-end license plate character recognition from a small set of real images. Appl. Sci. 10(8), 2780 (2020)CrossRef Han, B.G., Lee, J.T., Lim, K.T., Choi, D.H.: License plate image generation using generative adversarial networks for end-to-end license plate character recognition from a small set of real images. Appl. Sci. 10(8), 2780 (2020)CrossRef
34.
Zurück zum Zitat Jiang, T., Li, C., Yang, M., Wang, Z.: An improved YOLOv5s algorithm for object detection with an attention mechanism. Electronics. 11(16), 2494 (2022)CrossRef Jiang, T., Li, C., Yang, M., Wang, Z.: An improved YOLOv5s algorithm for object detection with an attention mechanism. Electronics. 11(16), 2494 (2022)CrossRef
35.
Zurück zum Zitat Olorunshola Oluwaseyi, Martins Ekata Irhebhude and Abraham Evwiekpaefe: A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms. Journal of Computing and Social Informatics 2(1):1–12,2(1):1–12,10.33736/jcsi.5070.2023 (2023) Olorunshola Oluwaseyi, Martins Ekata Irhebhude and Abraham Evwiekpaefe: A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms. Journal of Computing and Social Informatics 2(1):1–12,2(1):1–12,10.33736/jcsi.5070.2023 (2023)
36.
Zurück zum Zitat Casas, E., Ramos, L., Bendek, E., Rivas-Echeverria, F.: YOLOv5 vs. YOLOv8: Performance benchmarking in wildfire and smoke detection scenarios. J. Image Graphics. 12(2) (2024) Casas, E., Ramos, L., Bendek, E., Rivas-Echeverria, F.: YOLOv5 vs. YOLOv8: Performance benchmarking in wildfire and smoke detection scenarios. J. Image Graphics. 12(2) (2024)
37.
Zurück zum Zitat Tirupal, T., Reddy, B.U.K., Teja, K.S., Dhane, U.K., Prasad, M.S., Salau, A.O.: Intelligent traffic management and identification of emergency vehicles. In: Modelling of Virtual Worlds Using the Internet of Things, pp. 23–42. CRC (2024) Tirupal, T., Reddy, B.U.K., Teja, K.S., Dhane, U.K., Prasad, M.S., Salau, A.O.: Intelligent traffic management and identification of emergency vehicles. In: Modelling of Virtual Worlds Using the Internet of Things, pp. 23–42. CRC (2024)
38.
Zurück zum Zitat Mohla, S., Pande, S., Banerjee, B., Chaudhuri, S.: Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, pp. 416–425 (June 2020) Mohla, S., Pande, S., Banerjee, B., Chaudhuri, S.: Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, pp. 416–425 (June 2020)
40.
Zurück zum Zitat Assegie, T.A., Salau, A.O., Chhabra, G., Kaushik, K., Braide, S.L.: Evaluation of random forest and support vector machine models in educational data mining. InL 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, pp. 131–135 (2024). https://doi.org/10.1109/InCACCT61598.2024.10551110 Assegie, T.A., Salau, A.O., Chhabra, G., Kaushik, K., Braide, S.L.: Evaluation of random forest and support vector machine models in educational data mining. InL 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, pp. 131–135 (2024). https://​doi.​org/​10.​1109/​InCACCT61598.​2024.​10551110
41.
Zurück zum Zitat Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)CrossRef Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)CrossRef
42.
Zurück zum Zitat Dhanasekaran, S., Gopal, D., Logeshwaran, J., Ramya, N., Salau, A.O.: Multi-model Traffic forecasting in Smart cities using graph neural networks and transformer-based Multi-source Visual Fusion for Intelligent Transportation Management. Int. J. Intell. Transp. Syst. Res. (2024). https://doi.org/10.1007/s13177-024-00413-4CrossRef Dhanasekaran, S., Gopal, D., Logeshwaran, J., Ramya, N., Salau, A.O.: Multi-model Traffic forecasting in Smart cities using graph neural networks and transformer-based Multi-source Visual Fusion for Intelligent Transportation Management. Int. J. Intell. Transp. Syst. Res. (2024). https://​doi.​org/​10.​1007/​s13177-024-00413-4CrossRef
43.
Zurück zum Zitat Zheng, Y., Jiang, W.: Evaluation of vision transformers for traffic sign classification. Wirel. Commun. Mob. Comput. 20221, 3041117 (2022) Zheng, Y., Jiang, W.: Evaluation of vision transformers for traffic sign classification. Wirel. Commun. Mob. Comput. 20221, 3041117 (2022)
44.
Zurück zum Zitat Tummala, S., Kadry, S., Bukhari, S.A.C., Rauf, H.T.: Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Curr. Oncol. 29(10), 7498–7511 (2022)CrossRef Tummala, S., Kadry, S., Bukhari, S.A.C., Rauf, H.T.: Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Curr. Oncol. 29(10), 7498–7511 (2022)CrossRef
45.
Zurück zum Zitat Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 357–366) (2021) Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 357–366) (2021)
46.
Zurück zum Zitat Shi, H., Zhao, D.: License plate recognition system based on improved YOLOv5 and GRU. Ieee Access. 11, 10429–10439 (2023)CrossRef Shi, H., Zhao, D.: License plate recognition system based on improved YOLOv5 and GRU. Ieee Access. 11, 10429–10439 (2023)CrossRef
47.
Zurück zum Zitat Malhotra, R., Addis, M.T.: End-to-end historical handwritten ethiopic text recognition using deep learning. IEEE Access (2023) Malhotra, R., Addis, M.T.: End-to-end historical handwritten ethiopic text recognition using deep learning. IEEE Access (2023)
48.
Zurück zum Zitat Zhao, G., Wang, W., Wang, X., Bao, X., Li, H., Liu, M.: Incremental recognition of Multi-style Tibetan Character based on transfer learning. IEEE Access. 12, 44190–44206 (2024)CrossRef Zhao, G., Wang, W., Wang, X., Bao, X., Li, H., Liu, M.: Incremental recognition of Multi-style Tibetan Character based on transfer learning. IEEE Access. 12, 44190–44206 (2024)CrossRef
49.
Zurück zum Zitat Li, M., Fu, B., Zhang, Z., Qiao, Y.: Character-aware sampling and rectification for scene text recognition. IEEE Trans. Multimedia. 25, 649–661 (2021)CrossRef Li, M., Fu, B., Zhang, Z., Qiao, Y.: Character-aware sampling and rectification for scene text recognition. IEEE Trans. Multimedia. 25, 649–661 (2021)CrossRef
50.
Zurück zum Zitat Wu, L., Xu, Y., Hou, J., Chen, C.P., Liu, C.L.: A two-level rectification attention network for scene text recognition. IEEE Trans. Multimedia. 25, 2404–2414 (2022)CrossRef Wu, L., Xu, Y., Hou, J., Chen, C.P., Liu, C.L.: A two-level rectification attention network for scene text recognition. IEEE Trans. Multimedia. 25, 2404–2414 (2022)CrossRef
Metadaten
Titel
Edge Based Intelligent Secured Vehicle Filtering and Tracking System Using YOLO and EasyOCR
verfasst von
K. N. Apinaya Prethi
Satheeshkumar Palanisamy
S. Nithya
Ayodeji Olalekan Salau
Publikationsdatum
05.12.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00452-x

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.