Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.11.2016 | Methodologies and Application | Ausgabe 3/2018

Soft Computing 3/2018

Edge-enhanced bi-dimensional empirical mode decomposition-based emotion recognition using fusion of feature set

Zeitschrift:
Soft Computing > Ausgabe 3/2018
Autoren:
Arghya Bhattacharya, Dwaipayan Choudhury, Debangshu Dey
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Emotion recognition has been of great interest in psychology, machine intelligence, human–machine interaction and biomedical fields. This paper proposes a novel soft computing technique for facial emotion recognition by introducing edge- enhanced bidimensional empirical mode decomposition (EEBEMD) as a feature extraction tool for facial emotion recognition. Facial images are subjected to optimized cost function-based self-guided edge enhancement algorithm. BEMD has been applied on the edge- enhanced facial images, and the first four intrinsic mode functions (IMFs) and the residue have been calculated. On the basis of an empirical analysis, the first IMF is selected for further analysis. A proposed fusion model that consists of selected features from the gray-level co-occurrence matrix, the histogram of oriented gradients and the local ternary pattern of the IMF response is fed to a recursive feature elimination-based algorithm to select the appropriate feature subsets for classification. These feature vectors have been trained in three machine learning algorithms namely multi-class SVM, ELM with RBF kernel and k-NN classifier independently. The IMFs have been subjected to principal component analysis and linear discriminant analysis (LDA) algorithm successively for dimensionality reduction, and the facial images with different emotions have been clustered in different zones in the LDA subspace. The proposed method demonstrates promising accuracy when tested on the JAFFE database, Cohn–Kanade database and the eNTERFACE database.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

Soft Computing 3/2018 Zur Ausgabe

Premium Partner

    Bildnachweise