Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2016

30.07.2016

Effect of Aging on the Microstructure and Mechanical Properties of Magnesium Alloy AZ31

verfasst von: H. Kerenciler, S. Gündüz, M. Akif Erden, M. Türkmen, H. Karabulut

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure and mechanical properties of magnesium alloy AZ31 are studied after conventional and deformation aging under conditions corresponding to the thermal cycle of polymerization in paint coating of cars. The aging is conducted after 3-h solution treatment at 400°C, water quenching, and aging at 180°C for from 10 min to 6 h. Some of the specimens are deformed by 0.5% right after the solution treatment and then aged by the same regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Zhu,W. Li, Y.Wub, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 4, 203 – 207 (2012).CrossRef R. Zhu,W. Li, Y.Wub, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 4, 203 – 207 (2012).CrossRef
2.
Zurück zum Zitat J. F. Nie, X. L. Xiao, C. P. Luo, and B. C. Muddle, “Characterisation of precipitate phases in magnesium alloys using electron microdiffraction,” Micron, 32, 857 – 863 (2001).CrossRef J. F. Nie, X. L. Xiao, C. P. Luo, and B. C. Muddle, “Characterisation of precipitate phases in magnesium alloys using electron microdiffraction,” Micron, 32, 857 – 863 (2001).CrossRef
3.
Zurück zum Zitat S. Celotto, “TEM study of continuous precipitation in Mg – 9 wt.% Al – 1 wt.% Zn alloy,” Acta Mater., 48, 1775 – 1787 (2000).CrossRef S. Celotto, “TEM study of continuous precipitation in Mg – 9 wt.% Al – 1 wt.% Zn alloy,” Acta Mater., 48, 1775 – 1787 (2000).CrossRef
4.
Zurück zum Zitat A. F. Crawley and K. S. Milleken, “Precipitate morphology and orientation relations in an aged Mg – 9%Al – 1% Zn – 0.3% Mn alloy,” Acta Metall., 22, 557 – 562 (1974).CrossRef A. F. Crawley and K. S. Milleken, “Precipitate morphology and orientation relations in an aged Mg – 9%Al – 1% Zn – 0.3% Mn alloy,” Acta Metall., 22, 557 – 562 (1974).CrossRef
5.
Zurück zum Zitat J. B. Clark, “Age hardening in a Mg – 9 wt.% Al alloy,” Acta Metall., 16, 141 – 152 (1968).CrossRef J. B. Clark, “Age hardening in a Mg – 9 wt.% Al alloy,” Acta Metall., 16, 141 – 152 (1968).CrossRef
6.
Zurück zum Zitat M. X. Zhang and P. M. Kelly, “Crystallography of Mg17Al12 precipitates in AZ91D alloy,” Scr. Mater., 48, 647 – 652 (2002).CrossRef M. X. Zhang and P. M. Kelly, “Crystallography of Mg17Al12 precipitates in AZ91D alloy,” Scr. Mater., 48, 647 – 652 (2002).CrossRef
7.
Zurück zum Zitat R. E. Reedhill and W. D. Robertson, “Deformation of magnesium single crystals by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 209, 496 – 502 (1957). R. E. Reedhill and W. D. Robertson, “Deformation of magnesium single crystals by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 209, 496 – 502 (1957).
8.
Zurück zum Zitat F. E. Hauser, P. R. Landon, and J. E. Dorn, “Fracture of magnesium alloys at low temperature,” Trans. Amer. Inst. Min. Metall. Eng., 206, 589 – 593 (1956). F. E. Hauser, P. R. Landon, and J. E. Dorn, “Fracture of magnesium alloys at low temperature,” Trans. Amer. Inst. Min. Metall. Eng., 206, 589 – 593 (1956).
9.
Zurück zum Zitat A. R. Chaudhuri, H. C. Chang, and N. J. Grant, “Creep deformation of magnesium at elevated temperatures by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 203, 682 – 688 (1955). A. R. Chaudhuri, H. C. Chang, and N. J. Grant, “Creep deformation of magnesium at elevated temperatures by nonbasal slip,” Trans. Amer. Inst. Min. Metall. Eng., 203, 682 – 688 (1955).
10.
Zurück zum Zitat N. V. Ravi Kumar, J. J. Blandin, C. Desrayaud, F. Montheillet, and M. Suery, “Grain refinement in AZ91 magnesium alloy during thermomechanical processing,” Mater. Sci. Eng. A, 359, 150 – 157 (2003).CrossRef N. V. Ravi Kumar, J. J. Blandin, C. Desrayaud, F. Montheillet, and M. Suery, “Grain refinement in AZ91 magnesium alloy during thermomechanical processing,” Mater. Sci. Eng. A, 359, 150 – 157 (2003).CrossRef
11.
Zurück zum Zitat R. S. Chen, J. J. Blandin, M. Suery, Q. D.Wang, and E. H. Han, “Thermomechanical processing and superplasticity of AZ91 magnesium alloy,” J. Mater. Sci. Technol., 20, 295 – 297 (2004).CrossRef R. S. Chen, J. J. Blandin, M. Suery, Q. D.Wang, and E. H. Han, “Thermomechanical processing and superplasticity of AZ91 magnesium alloy,” J. Mater. Sci. Technol., 20, 295 – 297 (2004).CrossRef
12.
Zurück zum Zitat S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, “Dynamic microstructural changes in Mg – 9Al – 1Zn alloy during hot compression,” Scr. Mater., 61, 249 – 252 (2009).CrossRef S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, “Dynamic microstructural changes in Mg – 9Al – 1Zn alloy during hot compression,” Scr. Mater., 61, 249 – 252 (2009).CrossRef
13.
Zurück zum Zitat S. Ming-hong, S. Guo-dong,W. Yu, and Q. Jun, “Paint-bake response of AZ80 and AZ31 Mg alloys,” Trans. Nonferrous Met. Soc. China, 20, 571 – 575 (2010).CrossRef S. Ming-hong, S. Guo-dong,W. Yu, and Q. Jun, “Paint-bake response of AZ80 and AZ31 Mg alloys,” Trans. Nonferrous Met. Soc. China, 20, 571 – 575 (2010).CrossRef
14.
Zurück zum Zitat R. Gonzales-Martinez, J. Göken, D. Letzig, K. Steinhoff, and K. U. Kainer, “Influence of aging on damping of the magnesium-aluminum-zinc series,” J. Alloys Comp., 437, 127 – 132 (2007).CrossRef R. Gonzales-Martinez, J. Göken, D. Letzig, K. Steinhoff, and K. U. Kainer, “Influence of aging on damping of the magnesium-aluminum-zinc series,” J. Alloys Comp., 437, 127 – 132 (2007).CrossRef
15.
Zurück zum Zitat S. M. Hirth, G. J. Marshall, S. A. Court, and D. J. Lloyd, “Effects of Si on the aging behavior and formability of aluminum alloys based on AA6016,” Mater. Sci. Eng. A, 319, 452 – 456 (2001).CrossRef S. M. Hirth, G. J. Marshall, S. A. Court, and D. J. Lloyd, “Effects of Si on the aging behavior and formability of aluminum alloys based on AA6016,” Mater. Sci. Eng. A, 319, 452 – 456 (2001).CrossRef
16.
Zurück zum Zitat N. E. Bekheet, R. M. Gadelrap, M. F. Salah, and A. N. Abdel Azum, “The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites,” Mater. Des., 23, 153 – 159 (2002).CrossRef N. E. Bekheet, R. M. Gadelrap, M. F. Salah, and A. N. Abdel Azum, “The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites,” Mater. Des., 23, 153 – 159 (2002).CrossRef
17.
Zurück zum Zitat J. P. Zhou, D. S. Zhao, R. H. Wang, Z. F. Sun, J. B. Wang, J. N. Gui, and O. Zheng, “In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy,” Mater. Lett., 61, 4707 – 4710 (2007).CrossRef J. P. Zhou, D. S. Zhao, R. H. Wang, Z. F. Sun, J. B. Wang, J. N. Gui, and O. Zheng, “In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy,” Mater. Lett., 61, 4707 – 4710 (2007).CrossRef
18.
Zurück zum Zitat S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima. “Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy,” Mater. Sci. Eng. A, 523, 47 – 52 (2009).CrossRef S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima. “Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy,” Mater. Sci. Eng. A, 523, 47 – 52 (2009).CrossRef
19.
Zurück zum Zitat Turkish Standard TS EN ISO 6892-1, Metallic Materials – Tensile Testing, Part 1: Method of Test at Room Temperature, Turkish Standards Institution, March 2011. Turkish Standard TS EN ISO 6892-1, Metallic Materials – Tensile Testing, Part 1: Method of Test at Room Temperature, Turkish Standards Institution, March 2011.
20.
Zurück zum Zitat Y. Uematsu, K. Tokaji, and M. Matsumoto, “Effect of aging treatment on fatigue behavior in extruded AZ61 and AZ80 magnesium alloys,” Mater. Sci. Eng. A, 517, 138 – 145 (2009).CrossRef Y. Uematsu, K. Tokaji, and M. Matsumoto, “Effect of aging treatment on fatigue behavior in extruded AZ61 and AZ80 magnesium alloys,” Mater. Sci. Eng. A, 517, 138 – 145 (2009).CrossRef
21.
Zurück zum Zitat R. Zhu, W. Ji, Y. Wu, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 41, 203 – 207 (2012).CrossRef R. Zhu, W. Ji, Y. Wu, X. Cai, and Y. Yu, “Effect of aging treatment on low-cycle fatigue behavior of extruded Mg – 8Al – 0.5Zn alloys,” Mater. Des., 41, 203 – 207 (2012).CrossRef
22.
Zurück zum Zitat N. V. Ravi Kumar, J. J. Blandin, and M. Suery, “Effect of thermomechanical treatments on the microstructure of AZ91 alloy,” in: K. U. Kainer (ed.), Magnesium Alloys and their Applications, Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim (2006), pp. 161 – 167. N. V. Ravi Kumar, J. J. Blandin, and M. Suery, “Effect of thermomechanical treatments on the microstructure of AZ91 alloy,” in: K. U. Kainer (ed.), Magnesium Alloys and their Applications, Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim (2006), pp. 161 – 167.
23.
Zurück zum Zitat M. Marya, L. G. Hector, R. Verma, and W. Tong, “Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors,” Mater. Sci. Eng. A, 418, 341 – 356 (2006).CrossRef M. Marya, L. G. Hector, R. Verma, and W. Tong, “Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors,” Mater. Sci. Eng. A, 418, 341 – 356 (2006).CrossRef
24.
Zurück zum Zitat C. L. Liu, Y. C. Xin, G. Y. Tang, and K. C. Paul., “Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid,” Mater. Sci. Eng. A, 456, 350 – 357 (2007). C. L. Liu, Y. C. Xin, G. Y. Tang, and K. C. Paul., “Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid,” Mater. Sci. Eng. A, 456, 350 – 357 (2007).
25.
Zurück zum Zitat L. Yan, Z. Zhi-min, and X. Yong, “Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys,” Trans. Nonferrous Met. Soc. China, 21, 739 – 744 (2011).CrossRef L. Yan, Z. Zhi-min, and X. Yong, “Influence of aging on microstructure and mechanical properties of AZ80 and ZK60 magnesium alloys,” Trans. Nonferrous Met. Soc. China, 21, 739 – 744 (2011).CrossRef
26.
Zurück zum Zitat S. Gündüz and R. Kaçar, “Strengthening of 6063 aluminum alloy by strain ageing,” Kovove Mater., 46, 345 – 350 (2008). S. Gündüz and R. Kaçar, “Strengthening of 6063 aluminum alloy by strain ageing,” Kovove Mater., 46, 345 – 350 (2008).
27.
Zurück zum Zitat K. Zheng, J. Dong, X. Zeng, and W. Ding, “Effect of pre-deformation on aging characteristics and mechanical properties of Mg – Gd – Nd – Zr alloy,” Trans. Nonferrous Met. Soc. China, 17, 1164 – 1168 (2007).CrossRef K. Zheng, J. Dong, X. Zeng, and W. Ding, “Effect of pre-deformation on aging characteristics and mechanical properties of Mg – Gd – Nd – Zr alloy,” Trans. Nonferrous Met. Soc. China, 17, 1164 – 1168 (2007).CrossRef
28.
Zurück zum Zitat A. Das and S. Tarafder, “Geometry of dimples and its correlation with mechanical properties of austenitic stainless steel,” Scr. Mater., 59, 1014 – 1017 (2008).CrossRef A. Das and S. Tarafder, “Geometry of dimples and its correlation with mechanical properties of austenitic stainless steel,” Scr. Mater., 59, 1014 – 1017 (2008).CrossRef
29.
Zurück zum Zitat F. Lv, F. Yang, Q. Q. Duan, Y. S. Yang, S. D. Wu, S. X. Li, and Z. F. Zhang, “Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation,” Int. J. Fatigue, 33, 672 – 682 (2011).CrossRef F. Lv, F. Yang, Q. Q. Duan, Y. S. Yang, S. D. Wu, S. X. Li, and Z. F. Zhang, “Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation,” Int. J. Fatigue, 33, 672 – 682 (2011).CrossRef
Metadaten
Titel
Effect of Aging on the Microstructure and Mechanical Properties of Magnesium Alloy AZ31
verfasst von
H. Kerenciler
S. Gündüz
M. Akif Erden
M. Türkmen
H. Karabulut
Publikationsdatum
30.07.2016
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2016
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-016-9985-8

Weitere Artikel der Ausgabe 3-4/2016

Metal Science and Heat Treatment 3-4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.