Skip to main content

2011 | OriginalPaper | Buchkapitel

Effect of Bacterial and Fungal Abundance in Soil on the Emission of Carbon Dioxide from Soil in Semi-arid Climate in India

verfasst von : Rashmi Kant, Chirashree Ghosh, Lokendra Singh, Neelam Tripathi

Erschienen in: Survival and Sustainability

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon dioxide concentration in atmosphere is actively increasing since industrial revolution (1800) from 285 ppmv to 378 ppmv in 2005. Carbon dioxide efflux from soil due to floral and faunal respiration in soil, called soil respiration, is the second largest source of increasing concentration of CO2 in atmosphere. Soil respiration produces almost 11 times more carbon dioxide in atmosphere than that produced due to fossil fuel burning [18]. Microorganisms are the most abundant biotic group in soil and huge amount of CO2 is evolved from soil due to bacterial and fungal respiration. The present study investigated soil respiration and distribution of bacteria and fungi in the soil. The study was conducted in semi arid (subtropical) climate around New Delhi in India. Two different sites (Aravali Biodiversity Park and Yamuna Biodiversity Park) with ecologically different soil and vegetation conditions were studied. Three different locations were selected at each site and at each location CO2 efflux and microbial population were measured at three depths, topsoil (0–5 cm depth), midsoil (15–20 cm depth) and Deep soil (40–45 cm depth). Higher soil activity was found at Yamuna Biodiversity Park (YBP) having profuse ground vegetation, sandy soil with high organic matter and moisture content than Aravali Biodiversity Park (ABP) having scares vegetation, rocky area and dry soil with low organic matter content. Higher soil respiration is recorded in the surface and mid soil at YBP than ABP. However the soil respiration rate was slightly more in deep soil at ABP. In most of the cases soil respiration was found increasing from surface soil to deeper soil till 50 cm depth. Rate of soil respiration is highly correlated (R 2 = 0.7) to fungal population. Our study suggests that soil respiration process is a function of bacterial and fungal abundance in the soil. However, fungal population is more responsible for CO2 evolution in atmosphere from soil than bacterial population. Better understanding of soil respiration process can help in reducing CO2 emission and carbon sequestration process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allen MF, Morris SJ, Edwards F, Allen EB (1995) Microbe-plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC (eds),Global Change in mediterranean-type ecosystems Springer, New York, pp. 287–305 Allen MF, Morris SJ, Edwards F, Allen EB (1995) Microbe-plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC (eds),Global Change in mediterranean-type ecosystems Springer, New York, pp. 287–305
2.
Zurück zum Zitat Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030CrossRef Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030CrossRef
3.
Zurück zum Zitat Bouwman AF, Sombroek WG (1990) Inputs to climatic change by soil and agriculture related activities: present status and future trends. In Scharpenseel HW, Schomaker M, Ayoub A (eds) Soils and a warmer earth – effects of expected climate change on soil processes, with emphasis on the tropics and sub-tropics Developments in Soil Science 20, Elsevier, Amsterdam, pp 15–30CrossRef Bouwman AF, Sombroek WG (1990) Inputs to climatic change by soil and agriculture related activities: present status and future trends. In Scharpenseel HW, Schomaker M, Ayoub A (eds) Soils and a warmer earth – effects of expected climate change on soil processes, with emphasis on the tropics and sub-tropics Developments in Soil Science 20, Elsevier, Amsterdam, pp 15–30CrossRef
4.
Zurück zum Zitat Brodie E, Edwards S, Clipson N (2002) Bacterial community dynamics across a floristic gradient in a temperate upland grassland ecosystem. Microbial Ecol 44:260–270CrossRef Brodie E, Edwards S, Clipson N (2002) Bacterial community dynamics across a floristic gradient in a temperate upland grassland ecosystem. Microbial Ecol 44:260–270CrossRef
5.
Zurück zum Zitat Campos CA (2006) Response of soil surface CO2–C flux to land use changes in a tropical cloud forest (Mexico). Forest Ecol Manag 234:305–312CrossRef Campos CA (2006) Response of soil surface CO2–C flux to land use changes in a tropical cloud forest (Mexico). Forest Ecol Manag 234:305–312CrossRef
6.
Zurück zum Zitat Coleman DC (1973) Soil carbon balance in a successional grassland. Oikos 24:195–199CrossRef Coleman DC (1973) Soil carbon balance in a successional grassland. Oikos 24:195–199CrossRef
7.
Zurück zum Zitat Edmonds JA (1999) Beyond Kyoto: toward a technology greenhouse strategy. Consequences 5:17–28 Edmonds JA (1999) Beyond Kyoto: toward a technology greenhouse strategy. Consequences 5:17–28
8.
Zurück zum Zitat García C, Hernández T, Roldán A, Martín A (2002) Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol Biochem 34:635–642CrossRef García C, Hernández T, Roldán A, Martín A (2002) Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol Biochem 34:635–642CrossRef
9.
Zurück zum Zitat Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820CrossRef Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820CrossRef
10.
Zurück zum Zitat Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1996) The science of climate change. IPCC, contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1996) The science of climate change. IPCC, contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
11.
Zurück zum Zitat Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285:574–578CrossRef Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285:574–578CrossRef
12.
Zurück zum Zitat Howard DM, Howard PJ (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546CrossRef Howard DM, Howard PJ (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546CrossRef
13.
Zurück zum Zitat Inubushi K, Acquaye S (2004) Role of microbial mass in biogeochemical process in Paddy soil environments. Soil Sci Plant Nutr 50(6):793–805 Inubushi K, Acquaye S (2004) Role of microbial mass in biogeochemical process in Paddy soil environments. Soil Sci Plant Nutr 50(6):793–805
14.
Zurück zum Zitat Izaurralde RC, Rosenberg NJ, Lal R (2000) Mitigation of climate change by soil carbon sequestration: issues of science, monitoring, and degraded lands. Adv Agron 70,1–75 Advanced Agronomy, Washington, USACrossRef Izaurralde RC, Rosenberg NJ, Lal R (2000) Mitigation of climate change by soil carbon sequestration: issues of science, monitoring, and degraded lands. Adv Agron 70,1–75 Advanced Agronomy, Washington, USACrossRef
15.
Zurück zum Zitat Lal R (2001) Soil and the green house effects. In soil carbon sequestration and the green house effect, Rattan Lal. SSSA Special Publication, Madison, WI, p 57 Lal R (2001) Soil and the green house effects. In soil carbon sequestration and the green house effect, Rattan Lal. SSSA Special Publication, Madison, WI, p 57
16.
Zurück zum Zitat Landsberg JJ, Gower ST (1997) Application of physiological ecology to forest management. Academic Press, San Diego, CA p 354 Landsberg JJ, Gower ST (1997) Application of physiological ecology to forest management. Academic Press, San Diego, CA p 354
17.
Zurück zum Zitat Luo Y, Zhou X (2006) Soil respiration and the environments. Academic Press/Elsevier, San Diego, CA Luo Y, Zhou X (2006) Soil respiration and the environments. Academic Press/Elsevier, San Diego, CA
18.
Zurück zum Zitat Marland G, Boden TA, Andres RJ (2000) Global, regional, and national CO2 emissions. Trends: a compendium of data on global change. Oak Ridge, Tenn Marland G, Boden TA, Andres RJ (2000) Global, regional, and national CO2 emissions. Trends: a compendium of data on global change. Oak Ridge, Tenn
19.
Zurück zum Zitat Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453CrossRef Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453CrossRef
20.
Zurück zum Zitat Pascual JA, García C, Hernández T, Moreno JL, Ros M (2000) Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol Biochem 32:1877–1883CrossRef Pascual JA, García C, Hernández T, Moreno JL, Ros M (2000) Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol Biochem 32:1877–1883CrossRef
21.
Zurück zum Zitat Porter WM (1979) The ‘Most probable number’ method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519CrossRef Porter WM (1979) The ‘Most probable number’ method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519CrossRef
22.
Zurück zum Zitat Post WM, Kwon KC (2000) Soil carbon sequestration and land use change: processes and potential. Global Change Biol 6:317–327CrossRef Post WM, Kwon KC (2000) Soil carbon sequestration and land use change: processes and potential. Global Change Biol 6:317–327CrossRef
23.
Zurück zum Zitat Powlson D (2005) Will soil amplify climate change? Nature 433:204–205CrossRef Powlson D (2005) Will soil amplify climate change? Nature 433:204–205CrossRef
24.
Zurück zum Zitat Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81–89 Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81–89
25.
Zurück zum Zitat Rayment MB (2000) Closed chamber systems underestimate soil CO2 efflux. Eur J Soil Sci 51:107–110CrossRef Rayment MB (2000) Closed chamber systems underestimate soil CO2 efflux. Eur J Soil Sci 51:107–110CrossRef
26.
Zurück zum Zitat Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey Lessard ER, Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203 Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey Lessard ER, Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203
27.
Zurück zum Zitat Russell EJ, Appleyard A (1915) The atmosphere of the soil, its composition and causes of variation. J Agric Sci 7:1–48CrossRef Russell EJ, Appleyard A (1915) The atmosphere of the soil, its composition and causes of variation. J Agric Sci 7:1–48CrossRef
28.
Zurück zum Zitat Salimon CI, Dadvidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in Southwestern Amazonia. Global Change Biol 10:833–843CrossRef Salimon CI, Dadvidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in Southwestern Amazonia. Global Change Biol 10:833–843CrossRef
29.
Zurück zum Zitat Smith JL, Papendick RI, Bezdicek DF, Lynch JM (1993) Soil organic matter dynamics and crop residue management. In: Blaine Metting F Jr (ed) Soil microbial ecology – Applications in agricultural and environmental management. Marcel Dekker, New York, Basel, Hong Kong, pp 65–94 Smith JL, Papendick RI, Bezdicek DF, Lynch JM (1993) Soil organic matter dynamics and crop residue management. In: Blaine Metting F Jr (ed) Soil microbial ecology – Applications in agricultural and environmental management. Marcel Dekker, New York, Basel, Hong Kong, pp 65–94
30.
Zurück zum Zitat Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biol 10:601–617CrossRef Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biol 10:601–617CrossRef
32.
Zurück zum Zitat Wagai R, Brye KR, Gower ST, Norman JM, Bundy LG (1998) Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biol Biochem 30:1501–1509CrossRef Wagai R, Brye KR, Gower ST, Norman JM, Bundy LG (1998) Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biol Biochem 30:1501–1509CrossRef
33.
Zurück zum Zitat Waldrop MP, Firestone MK (2006) Seasonal dynamics of microbial community composition and function in oak canopy and grassland soils. Microb Ecol 52:470–479CrossRef Waldrop MP, Firestone MK (2006) Seasonal dynamics of microbial community composition and function in oak canopy and grassland soils. Microb Ecol 52:470–479CrossRef
34.
Zurück zum Zitat Wang C, Gower ST, Wang Y, Zhao H, Yan P, Bond-Lamberty B (2001) Influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biol 7:719–730CrossRef Wang C, Gower ST, Wang Y, Zhao H, Yan P, Bond-Lamberty B (2001) Influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biol 7:719–730CrossRef
35.
Zurück zum Zitat Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Global Change Biol 12:2103–2114CrossRef Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Global Change Biol 12:2103–2114CrossRef
36.
Zurück zum Zitat Woomer PL (1994) Most probable number counts. In: Weaver RW (ed) Methods of soil analysis. Part 2. Microbiological and biochemical properties SSSA Book Series 5. SSSA, Madison, WI, pp 59–79 Woomer PL (1994) Most probable number counts. In: Weaver RW (ed) Methods of soil analysis. Part 2. Microbiological and biochemical properties SSSA Book Series 5. SSSA, Madison, WI, pp 59–79
37.
Zurück zum Zitat Yim MH, Joo SJ, Nakane K (2002) Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecol Manag 170:189–197CrossRef Yim MH, Joo SJ, Nakane K (2002) Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecol Manag 170:189–197CrossRef
Metadaten
Titel
Effect of Bacterial and Fungal Abundance in Soil on the Emission of Carbon Dioxide from Soil in Semi-arid Climate in India
verfasst von
Rashmi Kant
Chirashree Ghosh
Lokendra Singh
Neelam Tripathi
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-95991-5_16