Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2016

16.09.2016

Effect of Carbon Distribution During the Microstructure Evolution of Dual-Phase Steels Studied Using Cellular Automata, Genetic Algorithms, and Experimental Strategies

verfasst von: Chandan Halder, Anish Karmakar, Sk. Md. Hasan, Debalay Chakrabarti, Maciej Pietrzyk, Nirupam Chakraborti

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of ferrite-martensite dual-phase microstructures by cold-rolling and intercritical annealing of 0.06 wt pct carbon steel was systematically studied using a dilatometer for two different heating rates (1 and 10 K/s). A step quenching treatment has been designed to develop dual-phase structures having a similar martensite fraction for two different heating rates. An increase in heating rate seemed to refine the ferrite grain size, but it increased the size and spacing of the martensitic regions. As a result, the strength of the steel increased with heating rate; however, the formability was affected. It has been concluded that the distribution of C during the annealing treatment of cold-rolled steel determines the size, distribution, and morphology of martensite, which ultimately influences the mechanical properties. Experimental detection of carbon distribution in austenite is difficult during annealing of the cold-rolled steel as the phase transformation occurs at a high temperature and C is an interstitial solute, which diffuses fast at that temperature. Therefore, a cellular automata (CA)-based phase transformation model is proposed in the present study for the prediction of C distribution in austenite during annealing of steel as the function of C content and heating rate. The CA model predicts that the carbon distribution in austenite becomes more inhomogeneous when the heating rate increases. In the CA model, the extent of carbon inhomogeneity is measured using a kernel averaging method for different orders of neighbors, which accounts for the different physical space during calculation. The obtained results reveal that the 10th order (covering 10-µm physical spaces around the cell of interest) is showing the maximum inhomogeneity of carbon and the same effect has been investigated and confirmed using auger electron spectroscopy (AES) for 0.06 wt pct carbon steel. Furthermore, the optimization of carbon homogeneity with respect to heating rate has been performed using a bi-objective genetic programming (BioGP) strategy for the steel composition varying from 0.06 to 0.12 wt pct carbon along with other parameters like average austenite grain size and time of heating as the input variables. The analysis of the results obtained from BioGP suggests that the homogeneity of carbon increases with the increasing carbon concentration of steel. This is corroborated by analyzing the AES results obtained for 0.28 wt pct carbon steel using the same technique as that used for 0.06 wt pct carbon steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 1. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.CrossRef 1. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.CrossRef
2.
Zurück zum Zitat 2. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893-99.CrossRef 2. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893-99.CrossRef
3.
Zurück zum Zitat 3. H. Azizi-Alizamini, M. Militzer, and W. J. Poole: ISIJ Int., 2011, vol. 51, pp. 958-64.CrossRef 3. H. Azizi-Alizamini, M. Militzer, and W. J. Poole: ISIJ Int., 2011, vol. 51, pp. 958-64.CrossRef
4.
Zurück zum Zitat 4. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin: Acta Mater., 2005, vol. 53, pp. 3125-34.CrossRef 4. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin: Acta Mater., 2005, vol. 53, pp. 3125-34.CrossRef
5.
Zurück zum Zitat 5. J. Aldazabal and J.G. Sevillano: Mater. Sci. Eng. A, 2004, vol. 365, pp. 186-90.CrossRef 5. J. Aldazabal and J.G. Sevillano: Mater. Sci. Eng. A, 2004, vol. 365, pp. 186-90.CrossRef
6.
Zurück zum Zitat 6. N. Nakada, Y. Arakawa, K-S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128-33.CrossRef 6. N. Nakada, Y. Arakawa, K-S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128-33.CrossRef
7.
Zurück zum Zitat 7. H. Zakerinia, A. Kermanpur, and A. Najafizadeh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3562-7.CrossRef 7. H. Zakerinia, A. Kermanpur, and A. Najafizadeh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3562-7.CrossRef
8.
9.
Zurück zum Zitat 9. A. Karmakar, M. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A, 2013, vol. 564, pp. 389-99.CrossRef 9. A. Karmakar, M. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A, 2013, vol. 564, pp. 389-99.CrossRef
10.
Zurück zum Zitat 10. K.T. Park, Y.K. Lee, and D.H. Shin: ISIJ Int., 2005, vol. 45, pp. 750-5.CrossRef 10. K.T. Park, Y.K. Lee, and D.H. Shin: ISIJ Int., 2005, vol. 45, pp. 750-5.CrossRef
11.
Zurück zum Zitat 11. S.M. Hasan, A. Haldar, and D. Chakrabarti: Mater. Sci. Technol., 2012, vol. 28, pp. 823-8.CrossRef 11. S.M. Hasan, A. Haldar, and D. Chakrabarti: Mater. Sci. Technol., 2012, vol. 28, pp. 823-8.CrossRef
12.
Zurück zum Zitat 12. X.L. Cai, A.J. Garratt-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16, pp. 543-57.CrossRef 12. X.L. Cai, A.J. Garratt-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16, pp. 543-57.CrossRef
13.
Zurück zum Zitat 13. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363-75.CrossRef 13. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363-75.CrossRef
14.
Zurück zum Zitat 14. C.I. Garcia and A.J. Deardo: Metall. Trans. A, 1981, vol. 12, pp. 521-30.CrossRef 14. C.I. Garcia and A.J. Deardo: Metall. Trans. A, 1981, vol. 12, pp. 521-30.CrossRef
15.
Zurück zum Zitat 15. T.B. Hilditch, I.B. Timokhina, L.T. Robertson, E.V. Pereloma, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40, pp. 342-53.CrossRef 15. T.B. Hilditch, I.B. Timokhina, L.T. Robertson, E.V. Pereloma, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40, pp. 342-53.CrossRef
16.
Zurück zum Zitat 16. D.S. Martín, P.E.J. Rivera-Díaz-del-Castillo, and C. García-de-Andrés: Scripta Mater., 2008, vol. 58, pp. 926-9.CrossRef 16. D.S. Martín, P.E.J. Rivera-Díaz-del-Castillo, and C. García-de-Andrés: Scripta Mater., 2008, vol. 58, pp. 926-9.CrossRef
17.
Zurück zum Zitat 17. F.G. Caballero, C. Capdevila, and C. García-de-Andrés: ISIJ Int., 2003, vol. 43, pp. 726-35.CrossRef 17. F.G. Caballero, C. Capdevila, and C. García-de-Andrés: ISIJ Int., 2003, vol. 43, pp. 726-35.CrossRef
18.
Zurück zum Zitat 18. V.V. Sagaradze: Nanostructured Mater., 1997, vol. 9, pp. 201-4.CrossRef 18. V.V. Sagaradze: Nanostructured Mater., 1997, vol. 9, pp. 201-4.CrossRef
19.
Zurück zum Zitat 19. T.A. Palmer and J.W. Elmer: Scripta Mater., 2005, vol. 53, pp. 535-40.CrossRef 19. T.A. Palmer and J.W. Elmer: Scripta Mater., 2005, vol. 53, pp. 535-40.CrossRef
20.
Zurück zum Zitat 20. C. Lesch, P. Álvarez, W. Bleck, and J.G. Sevillano: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1882-90.CrossRef 20. C. Lesch, P. Álvarez, W. Bleck, and J.G. Sevillano: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1882-90.CrossRef
21.
Zurück zum Zitat 21. R. Padmanabhan and W.E. Wood: Mater. Sci. Eng., 1984, vol. 66, pp. 125-43.CrossRef 21. R. Padmanabhan and W.E. Wood: Mater. Sci. Eng., 1984, vol. 66, pp. 125-43.CrossRef
22.
Zurück zum Zitat 22. D.K. Mondal and R.M. Dey: Mater. Sci. Eng. A, 1992, vol. 149, pp. 173-81.CrossRef 22. D.K. Mondal and R.M. Dey: Mater. Sci. Eng. A, 1992, vol. 149, pp. 173-81.CrossRef
23.
Zurück zum Zitat 23. S.D. Martín, D.T. Cock, A. García-Junceda, F.G. Caballero, C. Capdevila, and C. Garcia -de-Andrés: Mater. Sci. Technol., 2008, vol. 24, pp. 266-72.CrossRef 23. S.D. Martín, D.T. Cock, A. García-Junceda, F.G. Caballero, C. Capdevila, and C. Garcia -de-Andrés: Mater. Sci. Technol., 2008, vol. 24, pp. 266-72.CrossRef
24.
Zurück zum Zitat 24. V.I. Savran, Y.V. Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Mater. Trans. A, 2007, vol. 38, pp. 946-55.CrossRef 24. V.I. Savran, Y.V. Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Mater. Trans. A, 2007, vol. 38, pp. 946-55.CrossRef
25.
Zurück zum Zitat 25. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544-57.CrossRef 25. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1544-57.CrossRef
26.
Zurück zum Zitat 26. J.Y. Koo, G. Thomas, and M. Raghavan: Metall. Trans. A, 1980, vol. 11, pp. 351-5.CrossRef 26. J.Y. Koo, G. Thomas, and M. Raghavan: Metall. Trans. A, 1980, vol. 11, pp. 351-5.CrossRef
27.
Zurück zum Zitat 27. L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, and R. Kuziak: Comput. Mater. Sci., 2013, vol. 77, pp. 172-81.CrossRef 27. L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, and R. Kuziak: Comput. Mater. Sci., 2013, vol. 77, pp. 172-81.CrossRef
28.
Zurück zum Zitat N. Chakraborti: in Computational Approaches to Materials Design: Theoretical and Practical Aspects, Engineering Science Reference, D. Dutta and J.P. Davim, eds., Hershey, PA, 2016, pp. 346–68.CrossRef N. Chakraborti: in Computational Approaches to Materials Design: Theoretical and Practical Aspects, Engineering Science Reference, D. Dutta and J.P. Davim, eds., Hershey, PA, 2016, pp. 346–68.CrossRef
29.
Zurück zum Zitat 29. R.R. Mohanty, O.A. Girina, and N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3680-90.CrossRef 29. R.R. Mohanty, O.A. Girina, and N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3680-90.CrossRef
30.
Zurück zum Zitat 30. C. Zheng, D. Raabe, and D. Li: Acta Mater., 2012, vol. 60, pp. 4768-79.CrossRef 30. C. Zheng, D. Raabe, and D. Li: Acta Mater., 2012, vol. 60, pp. 4768-79.CrossRef
31.
Zurück zum Zitat 31. V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz: J. Mater. Sci., 2014, vol. 49, pp. 7782-96.CrossRef 31. V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz: J. Mater. Sci., 2014, vol. 49, pp. 7782-96.CrossRef
32.
Zurück zum Zitat 32. L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386-98.CrossRef 32. L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386-98.CrossRef
33.
Zurück zum Zitat C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Ann. Rev. Mater. Res., 2015, vol. 45, pp. 1-41.CrossRef C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Ann. Rev. Mater. Res., 2015, vol. 45, pp. 1-41.CrossRef
34.
Zurück zum Zitat 34. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423-38.CrossRef 34. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423-38.CrossRef
35.
Zurück zum Zitat 35. B. Pawłowski: J. Achiev. Mater. Manuf. Eng., 2011, vol. 49, pp. 331-7. 35. B. Pawłowski: J. Achiev. Mater. Manuf. Eng., 2011, vol. 49, pp. 331-7.
36.
Zurück zum Zitat C.R. Books: Principle of the Austenitization of Steels, Elsevier Science Publisher Ltd., Cambridge, UK, 1992, pp. 101-02. C.R. Books: Principle of the Austenitization of Steels, Elsevier Science Publisher Ltd., Cambridge, UK, 1992, pp. 101-02.
37.
Zurück zum Zitat 37. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Acta Mater., 2011, vol. 59, no. 11, pp. 4387-94.CrossRef 37. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Acta Mater., 2011, vol. 59, no. 11, pp. 4387-94.CrossRef
38.
Zurück zum Zitat 38. M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832-40.CrossRef 38. M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832-40.CrossRef
39.
Zurück zum Zitat 39. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2008, vol. 48, pp. 1096-1101.CrossRef 39. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2008, vol. 48, pp. 1096-1101.CrossRef
40.
Zurück zum Zitat 40. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.CrossRef 40. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.CrossRef
41.
Zurück zum Zitat 41. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2012, vol. 52, pp. 874-83.CrossRef 41. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2012, vol. 52, pp. 874-83.CrossRef
42.
Zurück zum Zitat 42. M. Calcagnotto, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2012, vol. 43, pp. 37-46.CrossRef 42. M. Calcagnotto, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2012, vol. 43, pp. 37-46.CrossRef
43.
Zurück zum Zitat J. Staba and M. Bursak: Metalurgija, 2009, vol. 48 (3), pp. 167-70. J. Staba and M. Bursak: Metalurgija, 2009, vol. 48 (3), pp. 167-70.
44.
Zurück zum Zitat 44. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe: Acta Mater., 2014, vol. 81, pp. 386-400.CrossRef 44. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe: Acta Mater., 2014, vol. 81, pp. 386-400.CrossRef
45.
Zurück zum Zitat 45. C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe: Int. J. Plast., 2014, vol. 63, pp. 198-210.CrossRef 45. C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe: Int. J. Plast., 2014, vol. 63, pp. 198-210.CrossRef
46.
Zurück zum Zitat 46. D. Yan, C.C. Tasan, and D. Raabe: Acta Mater., 2015, vol. 96, pp. 399-409.CrossRef 46. D. Yan, C.C. Tasan, and D. Raabe: Acta Mater., 2015, vol. 96, pp. 399-409.CrossRef
47.
Zurück zum Zitat 47. C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504-17.CrossRef 47. C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504-17.CrossRef
48.
Zurück zum Zitat 48. C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692-9.CrossRef 48. C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692-9.CrossRef
49.
Zurück zum Zitat 49. C. Halder, L. Madej, and M. Pietrzyk: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 96-103.CrossRef 49. C. Halder, L. Madej, and M. Pietrzyk: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 96-103.CrossRef
50.
Zurück zum Zitat 50. C. Halder, D. Bachniak, L. Madej, N. Chakraborti, and M. Pietrzyk: 2015, vol. 55, pp. 285-92. 50. C. Halder, D. Bachniak, L. Madej, N. Chakraborti, and M. Pietrzyk: 2015, vol. 55, pp. 285-92.
51.
Zurück zum Zitat 51. J.O. Andersson, T. Helander, L. Hoglund, P.F. Shi, and B. Sundman: Comput. Tools Mater. Sci. Calphad, 2002, vol. 26, pp. 273-312.CrossRef 51. J.O. Andersson, T. Helander, L. Hoglund, P.F. Shi, and B. Sundman: Comput. Tools Mater. Sci. Calphad, 2002, vol. 26, pp. 273-312.CrossRef
52.
Zurück zum Zitat 52. C. Halder, L. Madej, M. Pietrzyk, and N. Chakraborti: Mater. Manuf. Process., 2015, vol. 30, pp. 552-62.CrossRef 52. C. Halder, L. Madej, M. Pietrzyk, and N. Chakraborti: Mater. Manuf. Process., 2015, vol. 30, pp. 552-62.CrossRef
53.
Zurück zum Zitat 53. C.A.C. Coello, D.A. Van Veldhuizen, and G.B. Lamont: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 242, Kluwer Academic, New York, NY, 2002.CrossRef 53. C.A.C. Coello, D.A. Van Veldhuizen, and G.B. Lamont: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 242, Kluwer Academic, New York, NY, 2002.CrossRef
54.
Zurück zum Zitat 54. B.K. Giri, F. Pettersson, H. Saxén, and N. Chakraborti: Mater. Manuf. Process., 2013, vol. 28, no. 7, pp. 776-82.CrossRef 54. B.K. Giri, F. Pettersson, H. Saxén, and N. Chakraborti: Mater. Manuf. Process., 2013, vol. 28, no. 7, pp. 776-82.CrossRef
55.
Zurück zum Zitat 55. B.K. Giri, J. Hakanen, K. Miettinen, and N. Chakraborti: Appl. Soft Comput., 2013, vol. 13, no. 5, pp. 2613-23.CrossRef 55. B.K. Giri, J. Hakanen, K. Miettinen, and N. Chakraborti: Appl. Soft Comput., 2013, vol. 13, no. 5, pp. 2613-23.CrossRef
56.
Zurück zum Zitat 56. G. Iacca and E. Mininno: Advances in Artificial Life, Evolutionary Computation and Systems Chemistry, Springer, NY, pp. 40-52, 2015. 56. G. Iacca and E. Mininno: Advances in Artificial Life, Evolutionary Computation and Systems Chemistry, Springer, NY, pp. 40-52, 2015.
57.
Zurück zum Zitat V. Bevilacqu, N. Nuzzolese, E. Mininno, and G. Iacca: Intelligent Computing Methodologies volume 9773 of the series Lecture Notes in Computer Science, 2016, pp. 248–59. V. Bevilacqu, N. Nuzzolese, E. Mininno, and G. Iacca: Intelligent Computing Methodologies volume 9773 of the series Lecture Notes in Computer Science, 2016, pp. 248–59.
58.
Zurück zum Zitat 58. T.N. Nguyen, T. Siegmund, W. Tsutsui, H. Liao, and W. Chen: Mater. Des., 2016, vol. 105, pp. 51-65. 58. T.N. Nguyen, T. Siegmund, W. Tsutsui, H. Liao, and W. Chen: Mater. Des., 2016, vol. 105, pp. 51-65.
59.
Zurück zum Zitat 59. H. Goyal, N. Mandal, H. Roy, S.K. Mitra, and B. Mondal: Trans. Indian Inst. Met., 2015, vol. 68, no. 3, pp. 453-63.CrossRef 59. H. Goyal, N. Mandal, H. Roy, S.K. Mitra, and B. Mondal: Trans. Indian Inst. Met., 2015, vol. 68, no. 3, pp. 453-63.CrossRef
61.
Zurück zum Zitat 61. R. Jha, G.S. Dulikravich, N. Chakraborti, M. Fan, J. Schwartz, C.C. Koch, M.J. Colaco, C. Poloni, and I.N. Egorov: J. Alloy Comp., 2016, vol. 682, pp. 454-467.CrossRef 61. R. Jha, G.S. Dulikravich, N. Chakraborti, M. Fan, J. Schwartz, C.C. Koch, M.J. Colaco, C. Poloni, and I.N. Egorov: J. Alloy Comp., 2016, vol. 682, pp. 454-467.CrossRef
62.
Zurück zum Zitat 62. K. Miettinen: Nonlinear Multiobjective Optimization, vol. 12, Springer Science & Business Media, NY, 2012. 62. K. Miettinen: Nonlinear Multiobjective Optimization, vol. 12, Springer Science & Business Media, NY, 2012.
63.
Zurück zum Zitat 63. F. Pettersson, N. Chakraborti, and H. Saxén: Appl. Soft Comput. J., 2007, vol. 7, pp. 387-97.CrossRef 63. F. Pettersson, N. Chakraborti, and H. Saxén: Appl. Soft Comput. J., 2007, vol. 7, pp. 387-97.CrossRef
64.
Zurück zum Zitat 64. N. Chakraborti: Mater. Sci. Technol., 2014, vol. 30, pp. 1259-62.CrossRef 64. N. Chakraborti: Mater. Sci. Technol., 2014, vol. 30, pp. 1259-62.CrossRef
65.
Zurück zum Zitat 65. R. Jha, P.K. Sen, and N. Chakraborti: Steel Res. Int., 2014, vol. 85, pp. 219-32.CrossRef 65. R. Jha, P.K. Sen, and N. Chakraborti: Steel Res. Int., 2014, vol. 85, pp. 219-32.CrossRef
66.
Zurück zum Zitat 66. D.N. Mondal, K. Sarangi, F. Pettersson, P.K. Sen, H. Saxén, and N. Chakraborti: Hydrometallurgy, 2011, vol. 107, pp. 112-23.CrossRef 66. D.N. Mondal, K. Sarangi, F. Pettersson, P.K. Sen, H. Saxén, and N. Chakraborti: Hydrometallurgy, 2011, vol. 107, pp. 112-23.CrossRef
67.
Zurück zum Zitat 67. K. Hariharan, N. Chakraborti, F. Barlat, and M.G. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2704-7.CrossRef 67. K. Hariharan, N. Chakraborti, F. Barlat, and M.G. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2704-7.CrossRef
68.
Zurück zum Zitat 68. K. Hariharan, N.T. Nguyen, N. Chakraborti, F. Barlat, and M.G. Lee: Mater. Manuf. Process., 2014, vol. 30, pp. 403-13.CrossRef 68. K. Hariharan, N.T. Nguyen, N. Chakraborti, F. Barlat, and M.G. Lee: Mater. Manuf. Process., 2014, vol. 30, pp. 403-13.CrossRef
69.
Zurück zum Zitat 69. N. Chakraborti: Strategies for Evolutionary Data Driven Modeling in Chemical and Metallurgical Systems, Applicatio, Springer International Publishing, Switzerland, 2014.CrossRef 69. N. Chakraborti: Strategies for Evolutionary Data Driven Modeling in Chemical and Metallurgical Systems, Applicatio, Springer International Publishing, Switzerland, 2014.CrossRef
70.
Zurück zum Zitat 70. C. Halder, M. Sitko, L. Madej, M. Pietrzyk, and N. Chakraborti: Mater. Sci. Technol., 2015, vol. 32, pp. 366-74.CrossRef 70. C. Halder, M. Sitko, L. Madej, M. Pietrzyk, and N. Chakraborti: Mater. Sci. Technol., 2015, vol. 32, pp. 366-74.CrossRef
71.
Zurück zum Zitat 71. P. Collet: Genetic programming, Handbook of Research on Nature Inspired Computing for Economics and Management, Idea, Hershey, PA, pp. 59-73, 2007.CrossRef 71. P. Collet: Genetic programming, Handbook of Research on Nature Inspired Computing for Economics and Management, Idea, Hershey, PA, pp. 59-73, 2007.CrossRef
72.
Zurück zum Zitat T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.
73.
Zurück zum Zitat 73. C.C. Tutum, K. Deb, and I. Baran: Mater. Manufact. Process., 2015, vol. 30, no. 4, pp. 538-51.CrossRef 73. C.C. Tutum, K. Deb, and I. Baran: Mater. Manufact. Process., 2015, vol. 30, no. 4, pp. 538-51.CrossRef
74.
Zurück zum Zitat 74. A. Karmakar, M. Mandal, A. Mandal, M.B. Sk, S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47, no. 1, pp. 268-81.CrossRef 74. A. Karmakar, M. Mandal, A. Mandal, M.B. Sk, S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47, no. 1, pp. 268-81.CrossRef
Metadaten
Titel
Effect of Carbon Distribution During the Microstructure Evolution of Dual-Phase Steels Studied Using Cellular Automata, Genetic Algorithms, and Experimental Strategies
verfasst von
Chandan Halder
Anish Karmakar
Sk. Md. Hasan
Debalay Chakrabarti
Maciej Pietrzyk
Nirupam Chakraborti
Publikationsdatum
16.09.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2016
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3725-y

Weitere Artikel der Ausgabe 12/2016

Metallurgical and Materials Transactions A 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.