Skip to main content
Erschienen in: Journal of Coatings Technology and Research 1/2016

25.08.2015

Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings

verfasst von: M. Zabet, S. Moradian, Z. Ranjbar, N. Zanganeh

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, attempts were made to enhance conductivity of electrocoats (based on epoxy amine adduct) containing NH2-multiwalled carbon nanotubes (MWCNTs). The weight percent of incorporated MWCNTS into the electrocoat matrix varied in the range of 0.6–3.6 wt% to obtain a series of electrocoatings. These were then applied on steel substrates by a cathodic electrodeposition technique. Electrocoated films were characterized utilizing scanning electron microscopy and optical microscopy. The results illustrated that electrical conductivity was enhanced by increasing of the MWCNT load. At the percolation threshold, throwing power was dropped while the recoating ability was enhanced. Mechanical behavior of nanocomposites containing MWCNTs in the range of 0–2.8 wt% was investigated by dynamic mechanical thermal analysis (DMTA) and nanoindentation test methods. DMTA analysis revealed that the width of tan δ was increased by the addition of nanotubes up to 2.8 (wt%). Also, the results obtained from the nanoindentation test showed that the elastic modulus and hardness of the nanocomposites were decreased by the addition of MWCNTs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu, Z, Jie, X, Lu, G, “Corrosion Resistance of Pb–Sn Composite Coatings Reinforced by Carbon Nanotubes.” J. Coat. Technol. Res., 7 809–814 (2010)CrossRef Hu, Z, Jie, X, Lu, G, “Corrosion Resistance of Pb–Sn Composite Coatings Reinforced by Carbon Nanotubes.” J. Coat. Technol. Res., 7 809–814 (2010)CrossRef
2.
Zurück zum Zitat Geng, HZ, Kim, KK, So, KP, Lee, YS, Chang, Y, Lee, YH, “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films.” J. Am. Chem. Soc., 129 7758–7759 (2007)CrossRef Geng, HZ, Kim, KK, So, KP, Lee, YS, Chang, Y, Lee, YH, “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films.” J. Am. Chem. Soc., 129 7758–7759 (2007)CrossRef
3.
Zurück zum Zitat Carroll, DL, Czerw, R, Webster, S, “Polymer–Nanotube Composites for Transparent, Conducting Thin Films.” Synth. Met., 155 694–697 (2005)CrossRef Carroll, DL, Czerw, R, Webster, S, “Polymer–Nanotube Composites for Transparent, Conducting Thin Films.” Synth. Met., 155 694–697 (2005)CrossRef
4.
Zurück zum Zitat Funchini, G, Miller, S, Parekh, BB, Chhowalla, M, “Optical Anisotropy in Single-Walled Carbon Nanotube Thin Films: Implications for Transparent and Conducting Electrodes in Organic Photovoltaics.” Nano Lett., 8 2176–2179 (2008)CrossRef Funchini, G, Miller, S, Parekh, BB, Chhowalla, M, “Optical Anisotropy in Single-Walled Carbon Nanotube Thin Films: Implications for Transparent and Conducting Electrodes in Organic Photovoltaics.” Nano Lett., 8 2176–2179 (2008)CrossRef
5.
Zurück zum Zitat Johnson, JA, Barbato, MJ, Hopkins, SR, O’Malley, MUJ, “Dispersion and Film Properties of Carbon Nanofiber Pigmented Conductive Coatings.” Prog. Org. Coat., 47 198–206 (2003)CrossRef Johnson, JA, Barbato, MJ, Hopkins, SR, O’Malley, MUJ, “Dispersion and Film Properties of Carbon Nanofiber Pigmented Conductive Coatings.” Prog. Org. Coat., 47 198–206 (2003)CrossRef
6.
Zurück zum Zitat Sandler, JKW, Kirk, JE, Kinloch, IA, Shaffer, MSP, Windle, AH, “Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites.” Polymer, 44 5893–5899 (2003)CrossRef Sandler, JKW, Kirk, JE, Kinloch, IA, Shaffer, MSP, Windle, AH, “Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites.” Polymer, 44 5893–5899 (2003)CrossRef
7.
Zurück zum Zitat Nilsson, S, Wetterhall, M, Bergquist, J, Nyholm, L, Markides, KE, “A Simple and Robust Conductive Graphite Coating for Sheathless Electrospray Emitters Used in Capillary Electrophoresis/Mass Spectrometry.” Rapid Commun. Mass Spectrom., 15 1997–2000 (2001)CrossRef Nilsson, S, Wetterhall, M, Bergquist, J, Nyholm, L, Markides, KE, “A Simple and Robust Conductive Graphite Coating for Sheathless Electrospray Emitters Used in Capillary Electrophoresis/Mass Spectrometry.” Rapid Commun. Mass Spectrom., 15 1997–2000 (2001)CrossRef
8.
Zurück zum Zitat Afshar, A, Ghorbani, M, Mazaheri, M, “Electrodeposition of Graphite/Bronze Composite Coatings and Study of Electroplating Characteristics.” Surf. Coat. Technol., 187 293–300 (2004)CrossRef Afshar, A, Ghorbani, M, Mazaheri, M, “Electrodeposition of Graphite/Bronze Composite Coatings and Study of Electroplating Characteristics.” Surf. Coat. Technol., 187 293–300 (2004)CrossRef
9.
Zurück zum Zitat Peulon, S, Lincot, D, “Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions.” J. Electrochem. Soc., 145 864–874 (1998)CrossRef Peulon, S, Lincot, D, “Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions.” J. Electrochem. Soc., 145 864–874 (1998)CrossRef
10.
Zurück zum Zitat Hamid, ZA, “Review Article: Composite and Nanocomposite Coatings.” Metall. Eng., 3 29–42 (2014)CrossRef Hamid, ZA, “Review Article: Composite and Nanocomposite Coatings.” Metall. Eng., 3 29–42 (2014)CrossRef
11.
Zurück zum Zitat Gojny, FH, Wichmann, MHG, Fiedler, B, Schulte, K, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study.” Compos. Sci. Technol., 65 2300–2313 (2005)CrossRef Gojny, FH, Wichmann, MHG, Fiedler, B, Schulte, K, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study.” Compos. Sci. Technol., 65 2300–2313 (2005)CrossRef
12.
Zurück zum Zitat Guo, P, Chen, X, Gao, X, Song, H, Shen, H, “Fabrication and Mechanical Properties of Well-Dispersed Multiwalled Carbon Nanotubes/Epoxy Composites.” Compos. Sci. Technol., 67 3331–3337 (2007)CrossRef Guo, P, Chen, X, Gao, X, Song, H, Shen, H, “Fabrication and Mechanical Properties of Well-Dispersed Multiwalled Carbon Nanotubes/Epoxy Composites.” Compos. Sci. Technol., 67 3331–3337 (2007)CrossRef
13.
Zurück zum Zitat Chen, H, Muthuraman, H, Stokes, P, Zou, J, Liu, X, Wang, J, Huo, Q, Khondaker, SI, Zhai, L, “Dispersion of Carbon Nanotubes and Polymer Nanocomposite Fabrication Using Trifluoroacetic Acid as a Co-solvent.” Nanotechnology, 18 415606 (2007)CrossRef Chen, H, Muthuraman, H, Stokes, P, Zou, J, Liu, X, Wang, J, Huo, Q, Khondaker, SI, Zhai, L, “Dispersion of Carbon Nanotubes and Polymer Nanocomposite Fabrication Using Trifluoroacetic Acid as a Co-solvent.” Nanotechnology, 18 415606 (2007)CrossRef
14.
Zurück zum Zitat Blanchet, GB, Fincher, CR, Gao, F, “Polyaniline Nanotube Composites: A High-Resolution Printable Conductor.” Appl. Phys. Lett., 82 1290–1292 (2003)CrossRef Blanchet, GB, Fincher, CR, Gao, F, “Polyaniline Nanotube Composites: A High-Resolution Printable Conductor.” Appl. Phys. Lett., 82 1290–1292 (2003)CrossRef
15.
Zurück zum Zitat Qunaies, Z, Park, C, Wise, KE, Siochi, EJ, Harrison, JS, “Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites.” Compos. Sci. Technol., 63 (11) 1637–1646 (2003)CrossRef Qunaies, Z, Park, C, Wise, KE, Siochi, EJ, Harrison, JS, “Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites.” Compos. Sci. Technol., 63 (11) 1637–1646 (2003)CrossRef
16.
Zurück zum Zitat Jiang, X, Bin, Y, Matsuo, M, “Electrical and Mechanical Properties of Polyimide–Carbon Nanotubes Composites Fabricated by In Situ Polymerization.” Polymer, 46 7418–7424 (2005)CrossRef Jiang, X, Bin, Y, Matsuo, M, “Electrical and Mechanical Properties of Polyimide–Carbon Nanotubes Composites Fabricated by In Situ Polymerization.” Polymer, 46 7418–7424 (2005)CrossRef
17.
Zurück zum Zitat Zhu, B-K, Xie, S-H, Xu, Z-K, Xu, Y-Y, “Preparation and Properties of the Polyimide/Multi-walled Carbon Nanotubes (MWNTs) Nanocomposites.” Compos. Sci. Technol., 66 548–554 (2006)CrossRef Zhu, B-K, Xie, S-H, Xu, Z-K, Xu, Y-Y, “Preparation and Properties of the Polyimide/Multi-walled Carbon Nanotubes (MWNTs) Nanocomposites.” Compos. Sci. Technol., 66 548–554 (2006)CrossRef
18.
Zurück zum Zitat Kim, YJ, An, KJ, Suh, K-S, Choi, H-D, Kwon, J-H, Chung, Y-C, Kim, WN, Lee, A-K, Choi, J-I, Yoon, HG, “Hybridization of Oxidized MWNT and Silver Powder in Polyurethane Matrix for Electromagnetic Interference Shielding Application.” IEEE Trans. Electromagn. Compat., 47 872–879 (2005)CrossRef Kim, YJ, An, KJ, Suh, K-S, Choi, H-D, Kwon, J-H, Chung, Y-C, Kim, WN, Lee, A-K, Choi, J-I, Yoon, HG, “Hybridization of Oxidized MWNT and Silver Powder in Polyurethane Matrix for Electromagnetic Interference Shielding Application.” IEEE Trans. Electromagn. Compat., 47 872–879 (2005)CrossRef
19.
Zurück zum Zitat Koerner, H, Liu, W, Alexander, M, Mirau, P, Dowty, H, Vaia, RA, “Deformation—Morphology Correlations in Electrically Conductive Carbon Nanotube—Thermoplastic Polyurethane Nanocomposites.” Polymer, 46 4405–4420 (2005)CrossRef Koerner, H, Liu, W, Alexander, M, Mirau, P, Dowty, H, Vaia, RA, “Deformation—Morphology Correlations in Electrically Conductive Carbon Nanotube—Thermoplastic Polyurethane Nanocomposites.” Polymer, 46 4405–4420 (2005)CrossRef
20.
Zurück zum Zitat Seo, M-K, Park, S-J, “Electrical Resistivity and Rheological Behaviors of Carbon Nanotubes-Filled Polypropylene Composites.” Chem. Phys. Lett., 395 44–48 (2004)CrossRef Seo, M-K, Park, S-J, “Electrical Resistivity and Rheological Behaviors of Carbon Nanotubes-Filled Polypropylene Composites.” Chem. Phys. Lett., 395 44–48 (2004)CrossRef
21.
Zurück zum Zitat Gorrasi, G, Romeo, V, Sannino, D, Sarno, M, Ciambelli, P, Vittoria, V, Vivo, BD, Tucci, V, “Carbon Nanotube Induced Structural and Physical Property Transitions of Syndiotactic Polypropylene.” Nanotechnology, 18 275703 (2007)CrossRef Gorrasi, G, Romeo, V, Sannino, D, Sarno, M, Ciambelli, P, Vittoria, V, Vivo, BD, Tucci, V, “Carbon Nanotube Induced Structural and Physical Property Transitions of Syndiotactic Polypropylene.” Nanotechnology, 18 275703 (2007)CrossRef
22.
Zurück zum Zitat Tjong, SC, Liang, GD, Bao, SP, “Electrical Behavior of Polypropylene/Multiwalled Carbon Nanotube Nanocomposites with Low Percolation Threshold.” Scr. Mater., 57 461–464 (2007)CrossRef Tjong, SC, Liang, GD, Bao, SP, “Electrical Behavior of Polypropylene/Multiwalled Carbon Nanotube Nanocomposites with Low Percolation Threshold.” Scr. Mater., 57 461–464 (2007)CrossRef
23.
Zurück zum Zitat Ma, P-C, Siddiqui, NA, Marom, G, Kim, J-K, “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review.” Compos. Part A., 41 1345–1367 (2010)CrossRef Ma, P-C, Siddiqui, NA, Marom, G, Kim, J-K, “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review.” Compos. Part A., 41 1345–1367 (2010)CrossRef
24.
Zurück zum Zitat Zhou, YX, Wu, PX, “Improvement in Electrical, Thermal and Mechanical Properties of Epoxy by Filling Carbon Nanotube.” Polym. Lett., 2 40–48 (2008)CrossRef Zhou, YX, Wu, PX, “Improvement in Electrical, Thermal and Mechanical Properties of Epoxy by Filling Carbon Nanotube.” Polym. Lett., 2 40–48 (2008)CrossRef
25.
Zurück zum Zitat Li, J, Ma, PC, Chow, WS, To, CK, Tang, BZ, Kim, J-K, “Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes.” Adv. Funct. Mater., 17 3207–3215 (2007)CrossRef Li, J, Ma, PC, Chow, WS, To, CK, Tang, BZ, Kim, J-K, “Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes.” Adv. Funct. Mater., 17 3207–3215 (2007)CrossRef
26.
Zurück zum Zitat Austin, DW, Puretzky, AA, Geohegan, DB, Britt, PF, Guillorn, MA, Simpson, ML, “The Electrodeposition of Metal at Metal/Carbon Nanotube Junctions.” Chem. Phys. Lett., 361 525–529 (2002)CrossRef Austin, DW, Puretzky, AA, Geohegan, DB, Britt, PF, Guillorn, MA, Simpson, ML, “The Electrodeposition of Metal at Metal/Carbon Nanotube Junctions.” Chem. Phys. Lett., 361 525–529 (2002)CrossRef
27.
Zurück zum Zitat Eda, G, Solution-Processed Thin Films for Electronics Single-Walled Carbon Nanotubes and Graphene. New Brunswick, New Jersey (2009) Eda, G, Solution-Processed Thin Films for Electronics Single-Walled Carbon Nanotubes and Graphene. New Brunswick, New Jersey (2009)
28.
Zurück zum Zitat Frankland, SJV, Caglar, A, Brenner, DW, Griebel, M, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube–Polymer Interfaces.” J. Phys. Chem. B, 106 3046–3048 (2002)CrossRef Frankland, SJV, Caglar, A, Brenner, DW, Griebel, M, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube–Polymer Interfaces.” J. Phys. Chem. B, 106 3046–3048 (2002)CrossRef
29.
Zurück zum Zitat Krylova, I, “Painting by Electrodeposition on the Eve of the 21st Century.” Prog. Org. Coat., 42 119–131 (2001)CrossRef Krylova, I, “Painting by Electrodeposition on the Eve of the 21st Century.” Prog. Org. Coat., 42 119–131 (2001)CrossRef
30.
Zurück zum Zitat Kim, S-K, Oh, T-S, “Electrodeposition Behavior and Characteristics of Ni-Carbon Nanotube Composite Coatings.” Trans. Nonferr. Met. Soc., 21 68–72 (2011)CrossRef Kim, S-K, Oh, T-S, “Electrodeposition Behavior and Characteristics of Ni-Carbon Nanotube Composite Coatings.” Trans. Nonferr. Met. Soc., 21 68–72 (2011)CrossRef
31.
Zurück zum Zitat Zanganeh, N, Rajabi, A, Torabi, M, Allahkarami, M, Moghaddas, A, Sadrnezhaad, SK, “Growth and Microstructural Investigation of Multiwall Carbon Nanotubes Fabricated Using Electrodeposited Nickel Nanodeposits and Chemical Vapor Deposition Method.” J. Mol. Struct., 1074 250–254 (2014)CrossRef Zanganeh, N, Rajabi, A, Torabi, M, Allahkarami, M, Moghaddas, A, Sadrnezhaad, SK, “Growth and Microstructural Investigation of Multiwall Carbon Nanotubes Fabricated Using Electrodeposited Nickel Nanodeposits and Chemical Vapor Deposition Method.” J. Mol. Struct., 1074 250–254 (2014)CrossRef
32.
Zurück zum Zitat Furuno, N, Ohyabu, Y, “Methods for Measuring Throwing Power in Electro-deposition Coating.” Prog. Org. Coat., 5 201–217 (1977)CrossRef Furuno, N, Ohyabu, Y, “Methods for Measuring Throwing Power in Electro-deposition Coating.” Prog. Org. Coat., 5 201–217 (1977)CrossRef
33.
Zurück zum Zitat Muller, B, Poth, U, Coatings Formulation, p. 237. Vincentz, Hannover (2006) Muller, B, Poth, U, Coatings Formulation, p. 237. Vincentz, Hannover (2006)
34.
Zurück zum Zitat Jafari, S, Rozati, SM, “Characterization of Black Chrome Films Prepared by Electroplating Technique.” Solar Therm. Appl., 3999–4005 (2011) Jafari, S, Rozati, SM, “Characterization of Black Chrome Films Prepared by Electroplating Technique.” Solar Therm. Appl., 3999–4005 (2011)
36.
Zurück zum Zitat Blackley, DC, Polymer Latices. Springer Science & Business Media, Dordrecht (1997)CrossRef Blackley, DC, Polymer Latices. Springer Science & Business Media, Dordrecht (1997)CrossRef
37.
Zurück zum Zitat Stauffer, D, Aharony, A, Introduction to Percolation Theory. Francis and Taylor, London (1991) Stauffer, D, Aharony, A, Introduction to Percolation Theory. Francis and Taylor, London (1991)
38.
Zurück zum Zitat Barrau, S, Demont, P, Peigney, A, Laurent, C, Lacabanne, C, “DC and AC Conductivity of Carbon Nanotubes–Polyepoxy Composites.” Macromolecules, 36 5187–5194 (2003)CrossRef Barrau, S, Demont, P, Peigney, A, Laurent, C, Lacabanne, C, “DC and AC Conductivity of Carbon Nanotubes–Polyepoxy Composites.” Macromolecules, 36 5187–5194 (2003)CrossRef
39.
Zurück zum Zitat Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)CrossRef Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)CrossRef
40.
Zurück zum Zitat Huang, YY, Terentjev, EM, “Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites.” Adv. Funct. Mater., 20 4062–4068 (2010)CrossRef Huang, YY, Terentjev, EM, “Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites.” Adv. Funct. Mater., 20 4062–4068 (2010)CrossRef
Metadaten
Titel
Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings
verfasst von
M. Zabet
S. Moradian
Z. Ranjbar
N. Zanganeh
Publikationsdatum
25.08.2015
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 1/2016
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-015-9723-y

Weitere Artikel der Ausgabe 1/2016

Journal of Coatings Technology and Research 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.