Skip to main content
Erschienen in:

12.05.2021

Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys

verfasst von: M. Yu. Kollerov, D. E. Gusev, A. A. Sharonov, M. B. Afonina

Erschienen in: Metallurgist | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Die Studie untersucht den Einfluss chemischer Zusammensetzung und Struktur auf die Formwiederherstellungstemperaturen von Titannickellegierungen, die einen Formgedächtniseffekt aufweisen. Die Forscher analysierten den Einfluss von Schmelzmethoden, Heißverformung und Wärmebehandlung auf die Phasenzusammensetzung und Struktur dieser Legierungen. Insbesondere fanden sie heraus, dass das Vorhandensein von Ti2Ni und Ti4Ni2 (O, N) -Partikeln die Duktilität und Formwiederherstellungstemperaturen erheblich beeinflusst. Die Ergebnisse liefern wertvolle Formeln zur Berechnung des Nickelgehalts in der B2-Phase und zur Schätzung des Volumenanteils von Ti3Ni4-Partikeln, die zur Entwicklung präziserer Verarbeitungstechnologien für diese Legierungen beitragen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster, and M. L. Young, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des., No. 10, 1–42 (2014). O. Benefan, J. Brown, F. T. Calkins, P. Kumar, A. P. Stebner, T. L. Turner, R. Vaidyanathan, J. Webster, and M. L. Young, “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” Int. J. Mech. Mater. Des., No. 10, 1–42 (2014).
3.
Zurück zum Zitat A. A. Ilyin, M. Yu. Kollerov, V. I. Khachin, and D. A. Gusev, “Medical instruments and implants of titanium nickelide: physical metallurgy, technology, and application,” Russ. Metall., No. 3, 296–300 (2002). A. A. Ilyin, M. Yu. Kollerov, V. I. Khachin, and D. A. Gusev, “Medical instruments and implants of titanium nickelide: physical metallurgy, technology, and application,” Russ. Metall., No. 3, 296–300 (2002).
4.
Zurück zum Zitat E. Lukina, M. Kollerov, J. Meswania, P. Panin, A. Khon, and G. Blunn, “The influence of TiN and DLC deposition on the wear resistance of Nitinol-Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4, No. 3., 4675–4679 (2017). E. Lukina, M. Kollerov, J. Meswania, P. Panin, A. Khon, and G. Blunn, “The influence of TiN and DLC deposition on the wear resistance of Nitinol-Ti6Al4V combination for the medical application,” Mater. Today: Proc., 4, No. 3., 4675–4679 (2017).
5.
Zurück zum Zitat J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., 58, No. 9, 3444–3458 (2010).CrossRef J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., 58, No. 9, 3444–3458 (2010).CrossRef
6.
Zurück zum Zitat J. Khalil-Allafia and B. Amin-Ahmadi, “The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys,” J. Alloys Comp., 487, 363–366 (2009).CrossRef J. Khalil-Allafia and B. Amin-Ahmadi, “The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys,” J. Alloys Comp., 487, 363–366 (2009).CrossRef
7.
Zurück zum Zitat K. Mehrabi, H. Bahmanpour, A. Shokuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. and Eng. A., 481–482, 693–696 (2008).CrossRef K. Mehrabi, H. Bahmanpour, A. Shokuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. and Eng. A., 481–482, 693–696 (2008).CrossRef
8.
Zurück zum Zitat S. M. Russell and A. R. Pelton, “Nitinol Melting and Fabrication,” Proceedings of SMST, 2000, (2000). S. M. Russell and A. R. Pelton, “Nitinol Melting and Fabrication,” Proceedings of SMST, 2000, (2000).
9.
Zurück zum Zitat M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci., 57, 911–946 (2012).CrossRef M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci., 57, 911–946 (2012).CrossRef
10.
Zurück zum Zitat D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of the volume fraction of Ti2Ni and aging on the structure and properties of alloys based on titanium nickelide,” Met. Sci. Heat Treat., 60, Is. 1-2, 72–79 (2018). D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of the volume fraction of Ti2Ni and aging on the structure and properties of alloys based on titanium nickelide,” Met. Sci. Heat Treat., 60, Is. 1-2, 72–79 (2018).
11.
Zurück zum Zitat K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, No. 5, 511–678 (2005).CrossRef K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, No. 5, 511–678 (2005).CrossRef
12.
Zurück zum Zitat A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, “Characterization of Inclusions in VIM/VAR NiTi Alloys,” J. Mater. Eng. Perform., 21, 2572–2577 (2012).CrossRef A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, “Characterization of Inclusions in VIM/VAR NiTi Alloys,” J. Mater. Eng. Perform., 21, 2572–2577 (2012).CrossRef
13.
Zurück zum Zitat A. Toro, F. Zhou, M. H. Wu, W. Van Geertruyden, and W. Z. Misiolek, “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18, 448–458 (2009).CrossRef A. Toro, F. Zhou, M. H. Wu, W. Van Geertruyden, and W. Z. Misiolek, “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18, 448–458 (2009).CrossRef
14.
Zurück zum Zitat A. I. Lotkov, S. Yu. Zavodchikov, V. A. Kotrekhov, V. N. Grishkov, N. V. Girsova, and V. N. Timkin, “Structure and martensitic transformations in titanium nickelide ingots obtained by vacuum induction melting with a cold crucible,” Persp. Mat., 1, No. 13 (Special edition), 31–42 (2011). A. I. Lotkov, S. Yu. Zavodchikov, V. A. Kotrekhov, V. N. Grishkov, N. V. Girsova, and V. N. Timkin, “Structure and martensitic transformations in titanium nickelide ingots obtained by vacuum induction melting with a cold crucible,” Persp. Mat., 1, No. 13 (Special edition), 31–42 (2011).
15.
Zurück zum Zitat V. V. Tetyukhin, I. V. Levin, M. I. Musatov, I. Yu. Puzakov, S. M. Chechulin, and N. Yu. Tarenkova, “Skull melting as a promising method for the production of complex alloyed titanium alloys,” Tekh. Legk. Spl., No. 4, 7–12 (2007). V. V. Tetyukhin, I. V. Levin, M. I. Musatov, I. Yu. Puzakov, S. M. Chechulin, and N. Yu. Tarenkova, “Skull melting as a promising method for the production of complex alloyed titanium alloys,” Tekh. Legk. Spl., No. 4, 7–12 (2007).
16.
Zurück zum Zitat ASTM F2082/F2082M-16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, West Conshohocken, PA, 2016; [electronic resource] www.astm.org (requested on 27.07.2020). ASTM F2082/F2082M-16, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery, ASTM International, West Conshohocken, PA, 2016; [electronic resource] www.astm.org (requested on 27.07.2020).
17.
Zurück zum Zitat ASTM F2063–18, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, PA (2018); [electronic resource] www.astm.org (requested on 27.07.2020). ASTM F2063–18, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, ASTM International, West Conshohocken, PA (2018); [electronic resource] www.astm.org (requested on 27.07.2020).
18.
Zurück zum Zitat M. Yu. Kollerov, D. E. Gusev, A. A. Chernysheva, D. A. Lamzin, A. V. Matytsin, and S. I. Gurtovoy, “Influence of the chemical composition and volume fraction of the Ti2Ni intermetallic compound on the characteristics of the shape memory effect in alloys based on titanium nickelide,” Nauch. Trud. MATI, No. 11 (83), Moscow, Lamtec, 12–16 (2006). M. Yu. Kollerov, D. E. Gusev, A. A. Chernysheva, D. A. Lamzin, A. V. Matytsin, and S. I. Gurtovoy, “Influence of the chemical composition and volume fraction of the Ti2Ni intermetallic compound on the characteristics of the shape memory effect in alloys based on titanium nickelide,” Nauch. Trud. MATI, No. 11 (83), Moscow, Lamtec, 12–16 (2006).
19.
Zurück zum Zitat M. Yu. Kollerov, D. E. Gusev, A. A. Chernyshova, S. I. Gurtovoy, and R. E. Vinogradov, “Influence of the content of nickel and impurities on the structure and temperature of the shape memory effect of alloys based on titanium nickelide,” Titan, 63, No. 1, 7–14 (2019). M. Yu. Kollerov, D. E. Gusev, A. A. Chernyshova, S. I. Gurtovoy, and R. E. Vinogradov, “Influence of the content of nickel and impurities on the structure and temperature of the shape memory effect of alloys based on titanium nickelide,” Titan, 63, No. 1, 7–14 (2019).
20.
Zurück zum Zitat G. R. Purdy and J. G. Parr, “A study of the titanium-nickel system between Ti2Ni and TiNi,” Trans. Metall. Soc. AIME, 221, 636–639 (1961). G. R. Purdy and J. G. Parr, “A study of the titanium-nickel system between Ti2Ni and TiNi,” Trans. Metall. Soc. AIME, 221, 636–639 (1961).
21.
Zurück zum Zitat A. A. Ilyin, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow, Nauka (1994). A. A. Ilyin, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys, Moscow, Nauka (1994).
22.
Zurück zum Zitat D. Holec, M. Friak, A. Dlouhy, and J. Neugebauer, “Ab initio study of point defects in NiTi-based alloys,” Phys. Rev. B, 89, 014110, 1–6 (2014). D. Holec, M. Friak, A. Dlouhy, and J. Neugebauer, “Ab initio study of point defects in NiTi-based alloys,” Phys. Rev. B, 89, 014110, 1–6 (2014).
23.
Zurück zum Zitat J. M. Lu, Q. M. Hu, L. Wang, Y. J. Li, D. S. Xu, and R. Yang, “Point defects and their interaction in TiNi from first-principles calculations,” Phys. Rev. B, 75, 094108, 1–7 (2007). J. M. Lu, Q. M. Hu, L. Wang, Y. J. Li, D. S. Xu, and R. Yang, “Point defects and their interaction in TiNi from first-principles calculations,” Phys. Rev. B, 75, 094108, 1–7 (2007).
24.
Zurück zum Zitat X. Ren and K. Otsuka, “A unified model for point-defect formation in B2 intermetallic compounds,” Philos. Mag. A, 80, No. 2, 467–491 (2000).CrossRef X. Ren and K. Otsuka, “A unified model for point-defect formation in B2 intermetallic compounds,” Philos. Mag. A, 80, No. 2, 467–491 (2000).CrossRef
25.
Zurück zum Zitat G. Erdelyi, Z. Erdelyi, D. L. Beke, J. Bernardini, and C. Lexcellent, “Pressure dependence of Ni self-diffusion in NiTi,” Phys. Rev. B., 62, No. 17, 11284–11287 (2000).CrossRef G. Erdelyi, Z. Erdelyi, D. L. Beke, J. Bernardini, and C. Lexcellent, “Pressure dependence of Ni self-diffusion in NiTi,” Phys. Rev. B., 62, No. 17, 11284–11287 (2000).CrossRef
Metadaten
Titel
Effect of Chemical Composition and Structure on the Shape Recovery Temperatures of Titanium Nickelide-Based Alloys
verfasst von
M. Yu. Kollerov
D. E. Gusev
A. A. Sharonov
M. B. Afonina
Publikationsdatum
12.05.2021
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 1-2/2021
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01137-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.