Skip to main content
Erschienen in:

22.12.2022 | Technical Article

Effect of Composite Refining Modifier on Microstructure and Properties of AlSi10Mg Alloy

verfasst von: Ruiheng Li, Yicheng Feng, Yuanke Fu, Sicong Zhao, Lei Wang, Erjun Guo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 19/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to improve the effects of grain refinement, modification and refined degassing of Al-Si alloy synchronously, and to solve the problems of their mutual restrictions, the new type of composite refining modifier (K2TiF6, KBF4, NaCl and KCl) was used to tailor the microstructure of AlSi10Mg alloy. Through varying the content of K2TiF6 and KBF4, the effects of the composite refining modifier on microstructure and mechanical properties of AlSi10Mg alloy were investigated compared with the conventional C2Cl6 refining agent. The experimental results indicate that TiB2 is formed in situ by K2TiF6 and KBF4 at 800 °C. TiB2 distributed in the melt acts as nucleation substrates for the primary Al (α-Al), which promotes the refinement transition of α-Al. The Na and K in the composite refining modifier jointly modify the eutectic Si. At the same time, the reaction products can remove gases and oxidized inclusions from the melt and play a critical role in refined degassing. Excellent mechanical properties can be obtained when K2TiF6 and KBF4 account for 3.5 wt.% of the melt, with an increase in tensile strength and elongation of 33.1 and 126.9%, respectively, compared with adding 1.6 wt.% of C2Cl6 to the melt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.J. Jiang, C.Y. Liu, Z.X. Yang, Y.P. Li, H.F. Huang, and F.C. Qin, Effect of Friction Stir Processing on the Microstructure, Damping Capacity, and Mechanical Properties of Al-Si Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 1173–1179.CrossRef H.J. Jiang, C.Y. Liu, Z.X. Yang, Y.P. Li, H.F. Huang, and F.C. Qin, Effect of Friction Stir Processing on the Microstructure, Damping Capacity, and Mechanical Properties of Al-Si Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 1173–1179.CrossRef
2.
Zurück zum Zitat X. Liu, C. Zhao, X. Zhou, F. Eibl, Z. Shen, W. Liu, and W. Meiners, CNT-Reinforced AlSi10Mg Composite by Selective Laser Melting: Microstructural and Mechanical Properties, Mater. Sci. Technol., 2019, 35(9), p 1038–1045.CrossRef X. Liu, C. Zhao, X. Zhou, F. Eibl, Z. Shen, W. Liu, and W. Meiners, CNT-Reinforced AlSi10Mg Composite by Selective Laser Melting: Microstructural and Mechanical Properties, Mater. Sci. Technol., 2019, 35(9), p 1038–1045.CrossRef
3.
Zurück zum Zitat S. Behnamfard, R.A. Khosroshahi, D. Brabazon, and R.T. Mousavian, Study on the Incorporation of Ceramic Nanoparticles Into the Semi-Solid A356 Melt, Mater. Chem. Phys., 2019, 230, p 25–36.CrossRef S. Behnamfard, R.A. Khosroshahi, D. Brabazon, and R.T. Mousavian, Study on the Incorporation of Ceramic Nanoparticles Into the Semi-Solid A356 Melt, Mater. Chem. Phys., 2019, 230, p 25–36.CrossRef
4.
Zurück zum Zitat P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson, Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy, Mater. Sci. Eng. A, 2018, 716, p 165–178.CrossRef P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson, Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy, Mater. Sci. Eng. A, 2018, 716, p 165–178.CrossRef
5.
Zurück zum Zitat C.F. Feng and L. Froyen, Microstructures of in Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35, p 837–850.CrossRef C.F. Feng and L. Froyen, Microstructures of in Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35, p 837–850.CrossRef
6.
Zurück zum Zitat M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003.CrossRef M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003.CrossRef
7.
Zurück zum Zitat N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef
8.
Zurück zum Zitat W. Lefebvre, G. Rose, P. Delroisse, E. Baustert, F. Cuvilly, and A. Simar, Nanoscale Periodic Gradients Generated by Laser Powder Bed Fusion of An AlSi10Mg Alloy, Mater. Des., 2021, 197, p 109264.CrossRef W. Lefebvre, G. Rose, P. Delroisse, E. Baustert, F. Cuvilly, and A. Simar, Nanoscale Periodic Gradients Generated by Laser Powder Bed Fusion of An AlSi10Mg Alloy, Mater. Des., 2021, 197, p 109264.CrossRef
9.
Zurück zum Zitat J.R. Guan, Y.H. Jiang, X.W. Zhang, and X.Y. Chong, Microstructural Evolution and EBSD Analysis of AlSi10Mg Alloy Fabricated by Selective Laser Remelting, Mater. Charact., 2020, 161, p 110079.CrossRef J.R. Guan, Y.H. Jiang, X.W. Zhang, and X.Y. Chong, Microstructural Evolution and EBSD Analysis of AlSi10Mg Alloy Fabricated by Selective Laser Remelting, Mater. Charact., 2020, 161, p 110079.CrossRef
10.
Zurück zum Zitat T.T. Sun, H.Z. Wang, Z.Y. Gao, Y. Wu, M.L. Wang, X.Y. Jin, C.L.A. Leung, P.D. Lee, Y.A. Fu, and H.W. Wang, The Role of In-Situ Nano-TiB2 Particles in Improving the Printability of Noncastable 2024Al Alloy, Mater. Res. Lett., 2022, 10, p 656–665.CrossRef T.T. Sun, H.Z. Wang, Z.Y. Gao, Y. Wu, M.L. Wang, X.Y. Jin, C.L.A. Leung, P.D. Lee, Y.A. Fu, and H.W. Wang, The Role of In-Situ Nano-TiB2 Particles in Improving the Printability of Noncastable 2024Al Alloy, Mater. Res. Lett., 2022, 10, p 656–665.CrossRef
11.
Zurück zum Zitat W. Zhang, Y. Liu, J. Yang, J. Dang, H. Xu, and Z. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7 wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110.CrossRef W. Zhang, Y. Liu, J. Yang, J. Dang, H. Xu, and Z. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7 wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110.CrossRef
12.
Zurück zum Zitat J. Sun, X.B. Zhang, Y.J. Zhang, N.H. Ma, and H.W. Wang, Modification Mechanism of Primary Silicon by TiB2 Particles in a TiB2/ZL109 Composite, J. Mater. Sci., 2015, 50, p 1237–1247.CrossRef J. Sun, X.B. Zhang, Y.J. Zhang, N.H. Ma, and H.W. Wang, Modification Mechanism of Primary Silicon by TiB2 Particles in a TiB2/ZL109 Composite, J. Mater. Sci., 2015, 50, p 1237–1247.CrossRef
13.
Zurück zum Zitat P.T. Li, Y.G. Li, J.F. Nie, and X.F. Liu, Influence of Forming Process on Three-Dimensional Morphology of TiB2 Particles in Al-Ti-B Alloys, Trans. Nonferrous Metals Soc., 2012, 22, p 564–570.CrossRef P.T. Li, Y.G. Li, J.F. Nie, and X.F. Liu, Influence of Forming Process on Three-Dimensional Morphology of TiB2 Particles in Al-Ti-B Alloys, Trans. Nonferrous Metals Soc., 2012, 22, p 564–570.CrossRef
14.
Zurück zum Zitat X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, and L. Zuo, Twin-Controlled Growth of Eutectic Si in Unmodified and Sr-Modified Al-12.7% Si Alloys Investigated by SEM/EBSD, Acta Mater., 2015, 97, p 338–347.CrossRef X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, and L. Zuo, Twin-Controlled Growth of Eutectic Si in Unmodified and Sr-Modified Al-12.7% Si Alloys Investigated by SEM/EBSD, Acta Mater., 2015, 97, p 338–347.CrossRef
15.
Zurück zum Zitat M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart, The Role of Strontium in Modifying Aluminium-Silicon Alloys, Acta. Mater., 2012, 60, p 3920–3928.CrossRef M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart, The Role of Strontium in Modifying Aluminium-Silicon Alloys, Acta. Mater., 2012, 60, p 3920–3928.CrossRef
16.
Zurück zum Zitat A.A. Simard, F. Dallaire, J. Proulx, and P. Rochette, Inline Cleanliness Benchmarking of Aluminium Alloys, Alum. Today, 2000, 12, p 34–36. A.A. Simard, F. Dallaire, J. Proulx, and P. Rochette, Inline Cleanliness Benchmarking of Aluminium Alloys, Alum. Today, 2000, 12, p 34–36.
17.
Zurück zum Zitat Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects, J. light Metals, 2001, 1(1), p 73–84.CrossRef Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects, J. light Metals, 2001, 1(1), p 73–84.CrossRef
18.
Zurück zum Zitat Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, and G.X. Sun, Nucleation and Growth of Eutectic Cell in Hypoeutectic Al-Si Alloy, Trans. Nonferrous Metal Soc., 2011, 21, p 2186–2191.CrossRef Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, and G.X. Sun, Nucleation and Growth of Eutectic Cell in Hypoeutectic Al-Si Alloy, Trans. Nonferrous Metal Soc., 2011, 21, p 2186–2191.CrossRef
19.
Zurück zum Zitat B.Q. Zhang, H.S. Fang, J.G. Li, and H.T. Ma, Investigation on Microstructures and Refining Performances of Newly Developed Al-Ti-C Grain Refining Master Alloys, J. Mater. Sci. Lett., 2000, 19, p 1485–1489.CrossRef B.Q. Zhang, H.S. Fang, J.G. Li, and H.T. Ma, Investigation on Microstructures and Refining Performances of Newly Developed Al-Ti-C Grain Refining Master Alloys, J. Mater. Sci. Lett., 2000, 19, p 1485–1489.CrossRef
20.
Zurück zum Zitat G.S. Gan, L. Zhang, S.Y. Bei, Y. Lu, and B. Yang, Effect of TiB2 Addition on Microstructure of Spray-Formed Si-30Al Composite, Trans. Nonferrous Metal Soc., 2011, 21, p 2242–2247.CrossRef G.S. Gan, L. Zhang, S.Y. Bei, Y. Lu, and B. Yang, Effect of TiB2 Addition on Microstructure of Spray-Formed Si-30Al Composite, Trans. Nonferrous Metal Soc., 2011, 21, p 2242–2247.CrossRef
21.
Zurück zum Zitat A.K. Dahle, K. Nogita, S.D. Mcdonald, C. Dinnis, and L. Lu, Eutectic Modification and Microstructure Development in Al-Si Alloys, Mater. Sci. Eng. A, 2005, 413, p 243–248.CrossRef A.K. Dahle, K. Nogita, S.D. Mcdonald, C. Dinnis, and L. Lu, Eutectic Modification and Microstructure Development in Al-Si Alloys, Mater. Sci. Eng. A, 2005, 413, p 243–248.CrossRef
22.
Zurück zum Zitat F.Y. Cao, Y.D. Jia, K.G. Prashanth, P. Ma, J.S. Liu, S. Scudino, F. Huang, J. Eckert, and J. Sun, Evolution of Microstructure and Mechanical Properties of as-Cast Al-50Si Alloy Due to Heat Treatment and P Modifier Content, Mater. Des., 2015, 74, p 150–156.CrossRef F.Y. Cao, Y.D. Jia, K.G. Prashanth, P. Ma, J.S. Liu, S. Scudino, F. Huang, J. Eckert, and J. Sun, Evolution of Microstructure and Mechanical Properties of as-Cast Al-50Si Alloy Due to Heat Treatment and P Modifier Content, Mater. Des., 2015, 74, p 150–156.CrossRef
23.
Zurück zum Zitat S.Z. Lu and A. Hellawell, The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning, Metall. Mater. Trans. A, 1987, 18, p 1721–1733.CrossRef S.Z. Lu and A. Hellawell, The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning, Metall. Mater. Trans. A, 1987, 18, p 1721–1733.CrossRef
24.
Zurück zum Zitat S.Z. Lu and A. Hellawell, Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms, JOM-US, 1995, 47, p 38–40.CrossRef S.Z. Lu and A. Hellawell, Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms, JOM-US, 1995, 47, p 38–40.CrossRef
25.
Zurück zum Zitat A. Hellawell, The Growth and Structure of Eutectics with Silicon and Germanium, Prog. Mater. Sci., 1970, 15, p 3–78.CrossRef A. Hellawell, The Growth and Structure of Eutectics with Silicon and Germanium, Prog. Mater. Sci., 1970, 15, p 3–78.CrossRef
26.
Zurück zum Zitat F. Mao, S.Z. Wei, C. Chen, C. Zhang, X.D. Wang, and Z.Q. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268.CrossRef F. Mao, S.Z. Wei, C. Chen, C. Zhang, X.D. Wang, and Z.Q. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268.CrossRef
27.
Zurück zum Zitat B. Jiang, Z.S. Ji, M.L. Hu, M.L. Hu, H.Y. Xu, and S. Xu, A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy, Mater. Lett., 2019, 239, p 13–16.CrossRef B. Jiang, Z.S. Ji, M.L. Hu, M.L. Hu, H.Y. Xu, and S. Xu, A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy, Mater. Lett., 2019, 239, p 13–16.CrossRef
28.
Zurück zum Zitat G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12, p 344–350.CrossRef G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12, p 344–350.CrossRef
29.
Zurück zum Zitat C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho, Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs), J. Mater. Sci., 2013, 48, p 4191–4204.CrossRef C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho, Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs), J. Mater. Sci., 2013, 48, p 4191–4204.CrossRef
30.
Zurück zum Zitat L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543.CrossRef L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543.CrossRef
31.
Zurück zum Zitat Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.G. Li, and X.Y. Cao, Microstructures and Mechanical Properties of In-Situ TiB2/Al-xSi-03 Mg Composites, Trans. Nonferrous Metals Soc. China, 2021, 31(2), p 331–344.CrossRef Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.G. Li, and X.Y. Cao, Microstructures and Mechanical Properties of In-Situ TiB2/Al-xSi-03 Mg Composites, Trans. Nonferrous Metals Soc. China, 2021, 31(2), p 331–344.CrossRef
32.
Zurück zum Zitat S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29, p 49–113.CrossRef S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29, p 49–113.CrossRef
33.
Zurück zum Zitat A. Rezaei and H.M. Hosseini, Evolution of Microstructure and Mechanical Properties of A1-5 wt.% Ti Composite Fabricated by P/M and Hot Extrusion: Effect of Heat Treatment, Mater. Sci. Eng. A., 2017, 689, p 166–175.CrossRef A. Rezaei and H.M. Hosseini, Evolution of Microstructure and Mechanical Properties of A1-5 wt.% Ti Composite Fabricated by P/M and Hot Extrusion: Effect of Heat Treatment, Mater. Sci. Eng. A., 2017, 689, p 166–175.CrossRef
34.
Zurück zum Zitat Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al-Ti-B System, Acta Mater., 2015, 84, p 292–304.CrossRef Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al-Ti-B System, Acta Mater., 2015, 84, p 292–304.CrossRef
35.
Zurück zum Zitat J.S. Wang, A. Horsfield, U. Schwingenschlögl, and P.D. Lee, Heterogeneous Nucleation of Solid Al from the Melt by TiB2 and Al3Ti: An Ab Initio Molecular Dynamics Study, Phys. Rev. B, 2010, 82, p 184203.CrossRef J.S. Wang, A. Horsfield, U. Schwingenschlögl, and P.D. Lee, Heterogeneous Nucleation of Solid Al from the Melt by TiB2 and Al3Ti: An Ab Initio Molecular Dynamics Study, Phys. Rev. B, 2010, 82, p 184203.CrossRef
Metadaten
Titel
Effect of Composite Refining Modifier on Microstructure and Properties of AlSi10Mg Alloy
verfasst von
Ruiheng Li
Yicheng Feng
Yuanke Fu
Sicong Zhao
Lei Wang
Erjun Guo
Publikationsdatum
22.12.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 19/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07742-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.