Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2021

11.06.2021 | Original Research Article

Effect of Compositional Variation on the Microstructural Evolution and the Castability of Al–Mg–Si Ternary Alloys

verfasst von: Abdul Wahid Shah, Seong-Ho Ha, Bong-Hwan Kim, Young-Ok Yoon, Hyun-Kyu Lim, Shae K. Kim

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study examined the microstructural evolution and castability of Al–Mg–Si ternary alloys with varying Si contents. Al–6Mg–xSi alloys (where x = 0, 1, 3, 5, and 7; all compositions in mass pct) were examined, with Al–6 mass pct Mg as a base alloy. The results showed that in the ternary alloys with Si ≤ 3 pct, the solidification process ended with the formation of eutectic α-Al–Mg2Si phases generated by a univariant reaction. However, in the case of ternary alloys with Si > 3 pct, solidification was completed with the formation of α-Al–Mg2Si–Si ternary eutectic phases generated by a three-phase invariant reaction. In addition to the eutectic Mg2Si phases, the primary Mg2Si phases formed in each of the ternary alloys, and the size of both sets of phases increased with increasing Si content. The two-phase eutectic α-Al–Mg2Si nucleated from the primary Mg2Si phases. The inoculated Al–6Mg–1Si alloy had the smallest grain size. Moreover, the grain-refining efficacy of the Al–5Ti–B master alloy in the ternary alloys decreased with increasing Si content in the alloys. Despite the poisoning effect of Si on the potency of TiB2 compounds in the inoculated Al–6Mg–1Si alloy, the grain size of the alloy was slightly smaller than that of the Al–6Mg binary alloy. This resulted from the increasing growth restriction factor (induced by Si addition) of the Al–6Mg–1Si alloy. In terms of the castability, the examined alloys showed different levels of susceptibility to hot tearing. Among the alloys, the ternary Al–6Mg–5Si alloy exhibited the highest susceptibility to hot tearing, whereas the Al–6Mg–7Si exhibited the lowest. The severity of hot tearing initiated by the unraveling of the bifilm was determined by the freezing range, grain size, and the amount of eutectic phases at the end of the solidification process.
https://static-content.springer.com/image/art%3A10.1007%2Fs11661-021-06306-5/MediaObjects/11661_2021_6306_Figa_HTML.png

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] S. Ji, Y. Wang, D. Watson, Z. Fan: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 3185–3197.CrossRef [1] S. Ji, Y. Wang, D. Watson, Z. Fan: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 3185–3197.CrossRef
2.
Zurück zum Zitat [2] S. Ji, D. Watson, Z. Fan, M. White: Mater. Sci. Eng. A, 2012, Vol. 556, pp. 824–833.CrossRef [2] S. Ji, D. Watson, Z. Fan, M. White: Mater. Sci. Eng. A, 2012, Vol. 556, pp. 824–833.CrossRef
3.
Zurück zum Zitat [3] F. Yan, S.X. Ji, Z.Y. Fan: Mater. Sci. Forum, 2013, Vol. 765, pp. 64–68.CrossRef [3] F. Yan, S.X. Ji, Z.Y. Fan: Mater. Sci. Forum, 2013, Vol. 765, pp. 64–68.CrossRef
4.
Zurück zum Zitat [4] X. Zhu, H. Yang, X. Dong, S. Ji: J. Mater. Sci., 2019, vol. 54, pp. 5773–5787.CrossRef [4] X. Zhu, H. Yang, X. Dong, S. Ji: J. Mater. Sci., 2019, vol. 54, pp. 5773–5787.CrossRef
5.
Zurück zum Zitat [5] L. Li, S. Ji, Q. Zhu, Y. Wang, X. Dong, W. Yang, S. Midson, Y. Kang: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 3247–3256.CrossRef [5] L. Li, S. Ji, Q. Zhu, Y. Wang, X. Dong, W. Yang, S. Midson, Y. Kang: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 3247–3256.CrossRef
6.
Zurück zum Zitat [6] M. Tebib, F. Ajersch, A.M. Samuel, X.G. Chen: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 4282–4295.CrossRef [6] M. Tebib, F. Ajersch, A.M. Samuel, X.G. Chen: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 4282–4295.CrossRef
7.
Zurück zum Zitat [7] M. Azarbarmas, M. Emamy, M. Alipour: J. Mater. Sci., 2011, Vol. 46, pp. 6856–6862.CrossRef [7] M. Azarbarmas, M. Emamy, M. Alipour: J. Mater. Sci., 2011, Vol. 46, pp. 6856–6862.CrossRef
8.
Zurück zum Zitat [8] S. Li, S. Zhao, M. Pan, D. Chen, O. M. Barabash, R.I. Barabash: Mater. Trans., 1997, Vol. 38, pp. 553–559.CrossRef [8] S. Li, S. Zhao, M. Pan, D. Chen, O. M. Barabash, R.I. Barabash: Mater. Trans., 1997, Vol. 38, pp. 553–559.CrossRef
9.
Zurück zum Zitat [9] N. A. Belov, D.G. Eskin, A.A. Aksenov: Multicomponent phase diagrams: applications for commercial aluminum alloys, 1st ed., Elsevier, Oxford, 2005, pp. 48–52. [9] N. A. Belov, D.G. Eskin, A.A. Aksenov: Multicomponent phase diagrams: applications for commercial aluminum alloys, 1st ed., Elsevier, Oxford, 2005, pp. 48–52.
10.
Zurück zum Zitat [10] C. Li, Y.Y. Wu, H. Li, X.F. Liu: Acta. Mater., 2011, vol. 59, pp. 1058–1067.CrossRef [10] C. Li, Y.Y. Wu, H. Li, X.F. Liu: Acta. Mater., 2011, vol. 59, pp. 1058–1067.CrossRef
11.
Zurück zum Zitat [11] S.P. Li, S.X. Zhao, M.X. Pan, D.Q. Zhao, X.C. Chen, O.M. Barabash: J. Mater. Sci., 2001, vol. 36, pp. 1569–1575.CrossRef [11] S.P. Li, S.X. Zhao, M.X. Pan, D.Q. Zhao, X.C. Chen, O.M. Barabash: J. Mater. Sci., 2001, vol. 36, pp. 1569–1575.CrossRef
12.
Zurück zum Zitat [12] L. Bolzoni, N.H. Babu: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 746–756.CrossRef [12] L. Bolzoni, N.H. Babu: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 746–756.CrossRef
13.
Zurück zum Zitat [13] K.R. Ravi, S. Manivannan, G. Phanikumar, B.S. Murty, S. Sundarraj: Metall. Mater. Trans. A, 2011, Vol. 42A, pp. 2028–2039.CrossRef [13] K.R. Ravi, S. Manivannan, G. Phanikumar, B.S. Murty, S. Sundarraj: Metall. Mater. Trans. A, 2011, Vol. 42A, pp. 2028–2039.CrossRef
14.
Zurück zum Zitat [14] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang: Metall. Mater. Trans. A, 2014, Vol. 46A, pp. 505–515. [14] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang: Metall. Mater. Trans. A, 2014, Vol. 46A, pp. 505–515.
15.
Zurück zum Zitat [15] Y. Xu, D. Zhao, Y. Li: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1770–1781.CrossRef [15] Y. Xu, D. Zhao, Y. Li: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1770–1781.CrossRef
16.
Zurück zum Zitat [16] Q.L. Bai, Y. Li, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2016, Vol. 47A, pp. 4080–4091.CrossRef [16] Q.L. Bai, Y. Li, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2016, Vol. 47A, pp. 4080–4091.CrossRef
17.
Zurück zum Zitat [17] Y. Li, X. Gao, Z.R. Zhang, W.L. Xiao, H.X. Li, Q. Du, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2017, Vol. 48A, pp. 4744–4754.CrossRef [17] Y. Li, X. Gao, Z.R. Zhang, W.L. Xiao, H.X. Li, Q. Du, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2017, Vol. 48A, pp. 4744–4754.CrossRef
18.
Zurück zum Zitat [18] Y. Li, Z.R. Zhang, Z.Y. Zhao, H.X. Li, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 3603–3616.CrossRef [18] Y. Li, Z.R. Zhang, Z.Y. Zhao, H.X. Li, L. Katgerman, J.S. Zhang, L.Z. Zhuang: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 3603–3616.CrossRef
19.
Zurück zum Zitat [19] M.F. Ourfali, I. Todd, H. Jones: Metall. Mater. Trans. A, 2005, Vol. 36A, pp. 1368–1372.CrossRef [19] M.F. Ourfali, I. Todd, H. Jones: Metall. Mater. Trans. A, 2005, Vol. 36A, pp. 1368–1372.CrossRef
20.
Zurück zum Zitat [20] M. Uludag, R. Cetin, D. Dispinar: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1948–1961.CrossRef [20] M. Uludag, R. Cetin, D. Dispinar: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 1948–1961.CrossRef
21.
Zurück zum Zitat G.E. Totten and D.S. Mackenzie: Handbook of Aluminum: physical metallurgy and processes, vol. 1, Marcel Dekker Inc., New York, 2003, pp. 490–491 and 348. G.E. Totten and D.S. Mackenzie: Handbook of Aluminum: physical metallurgy and processes, vol. 1, Marcel Dekker Inc., New York, 2003, pp. 490–491 and 348.
22.
Zurück zum Zitat Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt: Mater. Sci. Eng., A, 1999, vol. 259, pp. 43–52. Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt: Mater. Sci. Eng., A, 1999, vol. 259, pp. 43–52.
23.
Zurück zum Zitat [23] A.W. Shah, S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim: Metall. Mater. Trans. A, 2020, vol. 38, 1056–1068. [23] A.W. Shah, S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim: Metall. Mater. Trans. A, 2020, vol. 38, 1056–1068.
24.
Zurück zum Zitat [24] X. Dore, H. Combeau, M. Rappaz: Acta Mater., 2000, Vol. 48, pp. 3951–3962.CrossRef [24] X. Dore, H. Combeau, M. Rappaz: Acta Mater., 2000, Vol. 48, pp. 3951–3962.CrossRef
25.
Zurück zum Zitat [25] S. Kumar and K.A.Q. O’Reilly: Mater. Charact., 2016. 120, pp. 311–322.CrossRef [25] S. Kumar and K.A.Q. O’Reilly: Mater. Charact., 2016. 120, pp. 311–322.CrossRef
26.
Zurück zum Zitat [26] M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. StJohn, L. Sweet, M.J. Couper: Metall. Mater. Trans. A, 2012. vol. 43A, pp. 3227–3238.CrossRef [26] M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. StJohn, L. Sweet, M.J. Couper: Metall. Mater. Trans. A, 2012. vol. 43A, pp. 3227–3238.CrossRef
27.
Zurück zum Zitat [27] S. Lin, C. Aliravci, M. O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, 1056–1068.CrossRef [27] S. Lin, C. Aliravci, M. O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, 1056–1068.CrossRef
28.
Zurück zum Zitat [28] D.G. Eskin, Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, Vol. 49, pp. 629–711.CrossRef [28] D.G. Eskin, Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, Vol. 49, pp. 629–711.CrossRef
29.
Zurück zum Zitat J. Campbell: Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 1st ed., Elsevier, Oxford, 2011, pp. 465–495 and pp. 298–302. J. Campbell: Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 1st ed., Elsevier, Oxford, 2011, pp. 465–495 and pp. 298–302.
30.
Zurück zum Zitat [30] N. Coniglio and C.E. Cross: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 2718–2728.CrossRef [30] N. Coniglio and C.E. Cross: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 2718–2728.CrossRef
32.
Zurück zum Zitat [32] E.F. Chirkov: Mater. Forum, 2004, vol. 28, pp. 692–99. [32] E.F. Chirkov: Mater. Forum, 2004, vol. 28, pp. 692–99.
Metadaten
Titel
Effect of Compositional Variation on the Microstructural Evolution and the Castability of Al–Mg–Si Ternary Alloys
verfasst von
Abdul Wahid Shah
Seong-Ho Ha
Bong-Hwan Kim
Young-Ok Yoon
Hyun-Kyu Lim
Shae K. Kim
Publikationsdatum
11.06.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06306-5

Weitere Artikel der Ausgabe 8/2021

Metallurgical and Materials Transactions A 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.