Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2016

24.10.2016

Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications

verfasst von: Kavitha V. Rao, G. S. Ananthapadmanabha, G. N. Dayananda

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature (T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Ratna and J. Karger-Kocsis, Recent Advances in Shape Memory Polymers and Composites: A Review, J. Mater. Sci., 2008, 10, p 254–269CrossRef D. Ratna and J. Karger-Kocsis, Recent Advances in Shape Memory Polymers and Composites: A Review, J. Mater. Sci., 2008, 10, p 254–269CrossRef
2.
Zurück zum Zitat H. Meng and J. Hu, A Brief Review of Stimulus-Active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli, J. Int. Mater. Syst. Struct., 2010, 5, p 5–25 H. Meng and J. Hu, A Brief Review of Stimulus-Active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli, J. Int. Mater. Syst. Struct., 2010, 5, p 5–25
3.
Zurück zum Zitat I.A. Rousseau, Challenges of Shape Memory Polymers: A Review of the Progress Toward Overcoming SMEPs Limitations, Polym. Eng. Sci., 2008, 1, p 1–32 I.A. Rousseau, Challenges of Shape Memory Polymers: A Review of the Progress Toward Overcoming SMEPs Limitations, Polym. Eng. Sci., 2008, 1, p 1–32
4.
Zurück zum Zitat A. Lendlein and S. Kelch, Shape Memory Polymers, Polymer, 2009, 50, p 1852–1856CrossRef A. Lendlein and S. Kelch, Shape Memory Polymers, Polymer, 2009, 50, p 1852–1856CrossRef
5.
Zurück zum Zitat A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Shape-Memory Polymers as a Technology Platform for Biomedical Applications, Expert Rev. Med. Devices, 2010, 7, p 357–379CrossRef A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Shape-Memory Polymers as a Technology Platform for Biomedical Applications, Expert Rev. Med. Devices, 2010, 7, p 357–379CrossRef
6.
Zurück zum Zitat Q. Meng and J. Hu, A Review of Shape Memory Polymer Composites and Blends, Compos. A, 2009, 40, p 1661–1672CrossRef Q. Meng and J. Hu, A Review of Shape Memory Polymer Composites and Blends, Compos. A, 2009, 40, p 1661–1672CrossRef
7.
Zurück zum Zitat C. Liu, H. Qin, and P.T. Mather, Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 2007, 17, p 1543–1558CrossRef C. Liu, H. Qin, and P.T. Mather, Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 2007, 17, p 1543–1558CrossRef
8.
Zurück zum Zitat M. Behl and A. Lendlein, Shape Memory Polymers, Mater. Today, 2007, 10, p 20–29CrossRef M. Behl and A. Lendlein, Shape Memory Polymers, Mater. Today, 2007, 10, p 20–29CrossRef
9.
Zurück zum Zitat Y. Liu, H. Lv, X. Lan, J. Leng, and S. Du, Review of Electro-Active Shape Memory Polymer Composite, J. Mater. Sci., 2009, 69, p 2064–2068 Y. Liu, H. Lv, X. Lan, J. Leng, and S. Du, Review of Electro-Active Shape Memory Polymer Composite, J. Mater. Sci., 2009, 69, p 2064–2068
10.
Zurück zum Zitat A. Lendlein and S. Kelch, Shape Memory Polymers, Angew. Chem. Int. Ed., 2002, 41, p 2034–2057CrossRef A. Lendlein and S. Kelch, Shape Memory Polymers, Angew. Chem. Int. Ed., 2002, 41, p 2034–2057CrossRef
11.
Zurück zum Zitat L. Sun, W.M. Huang, Z. Ding, Y. Zhao, H.P. Wang, and C. Tang, Stimulus-Responsive Shape Memory Materials: A Review, Mater. Des., 2012, 33, p 577–640CrossRef L. Sun, W.M. Huang, Z. Ding, Y. Zhao, H.P. Wang, and C. Tang, Stimulus-Responsive Shape Memory Materials: A Review, Mater. Des., 2012, 33, p 577–640CrossRef
12.
Zurück zum Zitat M.D. Hager, S. Bode, C. Webera, and U.S. Schuberta, Shape Memory Polymers: Past, Present and Future Developments, Prog. Polym. Sci., 2015, 49–50, p 3–33CrossRef M.D. Hager, S. Bode, C. Webera, and U.S. Schuberta, Shape Memory Polymers: Past, Present and Future Developments, Prog. Polym. Sci., 2015, 49–50, p 3–33CrossRef
13.
Zurück zum Zitat I.A. Rousseau and T. Xie, Shape Memory Epoxy: Composition, Structure, Properties and Shape Memory Performances, J. Mater. Chem., 2010, 20, p 3431–3441CrossRef I.A. Rousseau and T. Xie, Shape Memory Epoxy: Composition, Structure, Properties and Shape Memory Performances, J. Mater. Chem., 2010, 20, p 3431–3441CrossRef
14.
15.
Zurück zum Zitat M.S. Lake and D. Campbell, The Fundamentals of Designing Deployable Structures with Elastic Memory Composites, IEEE Aerosp. Conf. Proc., 2004, 4, p 2745–2756 M.S. Lake and D. Campbell, The Fundamentals of Designing Deployable Structures with Elastic Memory Composites, IEEE Aerosp. Conf. Proc., 2004, 4, p 2745–2756
16.
Zurück zum Zitat L. Zhang, D. Haiyang, L. Liu, Y. Liu, and J. Leng, Analysis and Design of Smart Mandrels Using Shape Memory Polymers, Compos. B, 2014, 59, p 230–237CrossRef L. Zhang, D. Haiyang, L. Liu, Y. Liu, and J. Leng, Analysis and Design of Smart Mandrels Using Shape Memory Polymers, Compos. B, 2014, 59, p 230–237CrossRef
17.
Zurück zum Zitat T. Xie and I. Rousseau, Facile Tailoring of Thermal Transition Temperatures of Epoxy Shape Memory Polymers, Polymer, 2009, 50, p 1852–1856CrossRef T. Xie and I. Rousseau, Facile Tailoring of Thermal Transition Temperatures of Epoxy Shape Memory Polymers, Polymer, 2009, 50, p 1852–1856CrossRef
18.
Zurück zum Zitat J.D. Merline, C.P. Reghunadhan Nair, and K.N. Ninan, Synthesis, Characterization, Curing and Shape Memory Properties of Epoxy-Polyether System, J. Macromol. Sci. Part A, 2008, 45, p 312–322CrossRef J.D. Merline, C.P. Reghunadhan Nair, and K.N. Ninan, Synthesis, Characterization, Curing and Shape Memory Properties of Epoxy-Polyether System, J. Macromol. Sci. Part A, 2008, 45, p 312–322CrossRef
19.
Zurück zum Zitat Y. Liu, C. Han, H. Tan, and X. Du, Thermal, Mechanical and Shape Memory Properties of Shape Memory Epoxy Resin, Mater. Sci. Eng. A, 2010, 527, p 2510–2514CrossRef Y. Liu, C. Han, H. Tan, and X. Du, Thermal, Mechanical and Shape Memory Properties of Shape Memory Epoxy Resin, Mater. Sci. Eng. A, 2010, 527, p 2510–2514CrossRef
20.
Zurück zum Zitat H. Deka and N. Karak, Shape-Memory Property and Characterization of Epoxy Resin-Modified Mesua ferrea L. Seed Oil-Based Hyperbranched Polyurethane, J. Appl. Polym. Sci., 2010, 116, p 106–115CrossRef H. Deka and N. Karak, Shape-Memory Property and Characterization of Epoxy Resin-Modified Mesua ferrea L. Seed Oil-Based Hyperbranched Polyurethane, J. Appl. Polym. Sci., 2010, 116, p 106–115CrossRef
21.
Zurück zum Zitat Kavitha, A. Revathi, S. Rao, S. Srihari, and G.N. Dayananda, Characterization of Shape Memory Behavior of CTBN-Epoxy Resin System, J. Polym. Res., 2012, 19, p 1–7CrossRef Kavitha, A. Revathi, S. Rao, S. Srihari, and G.N. Dayananda, Characterization of Shape Memory Behavior of CTBN-Epoxy Resin System, J. Polym. Res., 2012, 19, p 1–7CrossRef
22.
Zurück zum Zitat A. Revathi, S. Rao, K.V. Rao, M.M. Singh, M.S. Murugan, S. Srihari, and G.N. Dayananda, Effect of Strain on the Thermomechanical Behavior of Epoxy Based Shape Memory Polymers, J. Polym. Res., 2013, 20(113), p 1–10 A. Revathi, S. Rao, K.V. Rao, M.M. Singh, M.S. Murugan, S. Srihari, and G.N. Dayananda, Effect of Strain on the Thermomechanical Behavior of Epoxy Based Shape Memory Polymers, J. Polym. Res., 2013, 20(113), p 1–10
23.
Zurück zum Zitat J.J. Aklonis, W.J. MacKnight, Introduction to Polymer Viscoelasticity, Wiley International Publication, USA, 1983 J.J. Aklonis, W.J. MacKnight, Introduction to Polymer Viscoelasticity, Wiley International Publication, USA, 1983
24.
Zurück zum Zitat B.R. Gupta, Applied Rheology in Polymer Processing, Asian books Pvt. Ltd, New Delhi, 2005 B.R. Gupta, Applied Rheology in Polymer Processing, Asian books Pvt. Ltd, New Delhi, 2005
25.
Zurück zum Zitat E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, and C. Salom, Polymer Viscoelasticity—Stress and Strain in Practice, Marcel Dekker Inc., New York, 2000 E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, and C. Salom, Polymer Viscoelasticity—Stress and Strain in Practice, Marcel Dekker Inc., New York, 2000
26.
Zurück zum Zitat J.M. Crissman and G.B. McKenna, Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behaviour, Polym. Phys., 1990, 28, p 1463–1473CrossRef J.M. Crissman and G.B. McKenna, Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behaviour, Polym. Phys., 1990, 28, p 1463–1473CrossRef
27.
Zurück zum Zitat W.K. Goertzen and M.R. Kesseler, Creep Behavior of Carbon Fiber/Epoxy Matrix Composites, Mat. Sci. Eng. A, 2006, 421, p 217–225CrossRef W.K. Goertzen and M.R. Kesseler, Creep Behavior of Carbon Fiber/Epoxy Matrix Composites, Mat. Sci. Eng. A, 2006, 421, p 217–225CrossRef
28.
Zurück zum Zitat S. Vleeshouwers, A.M. Jamieson, and R. Simha, Effect of Physical Aging on Tensile Stress Relaxation and Tensile Creep of Cured EPON 828/Epoxy Adhesives in the Linear Viscoelastic Region, Polym. Eng. Sci., 1989, 29, p 662–670CrossRef S. Vleeshouwers, A.M. Jamieson, and R. Simha, Effect of Physical Aging on Tensile Stress Relaxation and Tensile Creep of Cured EPON 828/Epoxy Adhesives in the Linear Viscoelastic Region, Polym. Eng. Sci., 1989, 29, p 662–670CrossRef
29.
Zurück zum Zitat A. Hao, Y. Chen, and J.Y. Chen, Creep and Recovery Behavior of Kenaf/Polypropylene Nonwoven composites, J. Appl. Polym. Sci., 2014, doi:10.1002/app.40726 A. Hao, Y. Chen, and J.Y. Chen, Creep and Recovery Behavior of Kenaf/Polypropylene Nonwoven composites, J. Appl. Polym. Sci., 2014, doi:10.​1002/​app.​40726
30.
Zurück zum Zitat P. Shrotriya and N.R. Sottos, Creep and Stress Relaxation Behavior of Woven Glass/Epoxy Substrates for Multilayer Circuit Board Applications, Polym. Compos., 1998, 19, p 567–577CrossRef P. Shrotriya and N.R. Sottos, Creep and Stress Relaxation Behavior of Woven Glass/Epoxy Substrates for Multilayer Circuit Board Applications, Polym. Compos., 1998, 19, p 567–577CrossRef
31.
Zurück zum Zitat A. Genovese and R.A. Shanks, Time-Temperature Creep Behaviour of Poly (propylene) and Polar Ethylene Copolymer Blends, Macromol. Mater. Eng., 2007, 292, p 184–196CrossRef A. Genovese and R.A. Shanks, Time-Temperature Creep Behaviour of Poly (propylene) and Polar Ethylene Copolymer Blends, Macromol. Mater. Eng., 2007, 292, p 184–196CrossRef
32.
Zurück zum Zitat C.W. Fenga, C.W. Keong, Y.-P. Hsueh, Y.-Y. Wangc, and H.J. Sue, Modeling of Long-Term Creep Behaviour of Structural Epoxy Adhesives, Int. J. Adhes. Adhes., 2005, 25, p 427–436CrossRef C.W. Fenga, C.W. Keong, Y.-P. Hsueh, Y.-Y. Wangc, and H.J. Sue, Modeling of Long-Term Creep Behaviour of Structural Epoxy Adhesives, Int. J. Adhes. Adhes., 2005, 25, p 427–436CrossRef
33.
Zurück zum Zitat W.B. Song and Z.D. Wang, Characterization of Viscoelastic Behavior of Shape Memory Epoxy Systems, J. Appl. Polym. Sci., 2013, doi:10.1002/APP.38158 W.B. Song and Z.D. Wang, Characterization of Viscoelastic Behavior of Shape Memory Epoxy Systems, J. Appl. Polym. Sci., 2013, doi:10.​1002/​APP.​38158
Metadaten
Titel
Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications
verfasst von
Kavitha V. Rao
G. S. Ananthapadmanabha
G. N. Dayananda
Publikationsdatum
24.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2409-5

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Engineering and Performance 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.