Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2019

11.07.2019

Effect of Cu6Sn5 nanoparticles size on the properties of Sn0.3Ag0.7Cu nano-composite solders and joints

verfasst von: Zhixian Min, Yu Qiu, Xiaowu Hu, Haozhong Wang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of different-sized Cu6Sn5 nanoparticles on thermal behavior and interfacial reaction with Cu substrate of Sn–0.3Ag–0.7Cu solder was evaluated. The results showed that 30 nm and 70 nm Cu6Sn5 nanoparticles were successfully synthesized by using the method of different reductants, attributed to the difference of reductive ability. Under condition of the same heating parameters, 30 nm Cu6Sn5 nanoparticle owned lower sintering temperature than that of 70 nm Cu6Sn5 nanoparticle. The thermal behavior was revealed that the composite solders with the addition of different-sized Cu6Sn5 nanoparticles had slightly lower melting point and higher undercooling value, compared with original Sn–0.3Ag–0.7Cu solder alloy. The highest undercooling value occurred with 30 nm Cu6Sn5 nanoparticle addition. Moreover, the interfacial reactions between Cu substrate and Sn–0.3Ag–0.7Cu solders mixed with different-sized Cu6Sn5 nanoparticles have produced after reflowing at 250 °C and aging at 150 °C for different interval time. It was clearly found that comparing to the initial Sn–0.3Ag–0.7Cu/Cu solder joint, the thickness of interfacial intermetallic compound (IMC) layer on solder joint with adding nanoparticle was thinner and the growth rate was slower. The growth of interfacial IMC was suppressed with the addition of Cu6Sn5 nanoparticle, and 30 nm Cu6Sn5 nanoparticle had the strongest inhibition effect on the growth of IMC, as well as the growth of IMC grains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.M. Kumar, V. Kripesh, A.A.O. Tay, Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn–Pb solder alloy. J. Alloy Compd. 455, 148–158 (2008)CrossRef K.M. Kumar, V. Kripesh, A.A.O. Tay, Influence of single-wall carbon nanotube addition on the microstructural and tensile properties of Sn–Pb solder alloy. J. Alloy Compd. 455, 148–158 (2008)CrossRef
2.
Zurück zum Zitat M. Schaefer, R.A. Fournelle, J. Liang, Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control. J. Electron. Mater. 27, 1167–1176 (1998)CrossRef M. Schaefer, R.A. Fournelle, J. Liang, Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control. J. Electron. Mater. 27, 1167–1176 (1998)CrossRef
3.
Zurück zum Zitat A. Sharif, Y.C. Chan, R.A. Islam, Effect of volume in interfacial reaction between eutectic Sn–Pb solder and Cu metallization in microelectronic packaging. Mater. Sci. Eng. B 106, 120–125 (2004)CrossRef A. Sharif, Y.C. Chan, R.A. Islam, Effect of volume in interfacial reaction between eutectic Sn–Pb solder and Cu metallization in microelectronic packaging. Mater. Sci. Eng. B 106, 120–125 (2004)CrossRef
4.
Zurück zum Zitat R.A. Islam, B.Y. Wu, M.O. Alam et al., Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb solder. J. Alloy Compd. 392, 149–158 (2005)CrossRef R.A. Islam, B.Y. Wu, M.O. Alam et al., Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb solder. J. Alloy Compd. 392, 149–158 (2005)CrossRef
5.
Zurück zum Zitat J.X. Wang, H. Nishikawa, Impact strength of Sn–3.0Ag–0.5Cu solder bumps during isothermal aging. Microelectron. Reliab. 54, 1583–1591 (2014)CrossRef J.X. Wang, H. Nishikawa, Impact strength of Sn–3.0Ag–0.5Cu solder bumps during isothermal aging. Microelectron. Reliab. 54, 1583–1591 (2014)CrossRef
6.
Zurück zum Zitat H. Nishikawa, N. Lwata, Formation and growth of intermetallic compound layers at the interface during laser soldering using SnAg–Cu solder on a Cu Pad. J. Mater. Process. Technol. 215, 6–11 (2015)CrossRef H. Nishikawa, N. Lwata, Formation and growth of intermetallic compound layers at the interface during laser soldering using SnAg–Cu solder on a Cu Pad. J. Mater. Process. Technol. 215, 6–11 (2015)CrossRef
7.
Zurück zum Zitat S.Y. Zhang, S.H. Kim, T.W. Kim, Y.S. Kim, K.W. Paik, A study on the solder ball size and content effects of solder ACFs for flex-on-board (FOB) assembly applications using ultrasonic bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 9–14 (2015)CrossRef S.Y. Zhang, S.H. Kim, T.W. Kim, Y.S. Kim, K.W. Paik, A study on the solder ball size and content effects of solder ACFs for flex-on-board (FOB) assembly applications using ultrasonic bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 9–14 (2015)CrossRef
8.
Zurück zum Zitat S.Y. Zhang, K.W. Paik, A study on the failure mechanism and enhanced reliability of Sn58Bi solder anisotropic conductive flm joints in a pressure cooker test due to polymer viscoelastic properties and hydroswelling. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 216–223 (2016)CrossRef S.Y. Zhang, K.W. Paik, A study on the failure mechanism and enhanced reliability of Sn58Bi solder anisotropic conductive flm joints in a pressure cooker test due to polymer viscoelastic properties and hydroswelling. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 216–223 (2016)CrossRef
9.
Zurück zum Zitat Z.G. Chen, Y.W. Shi, Z.D. Xia et al., Properties of lead-free solder SnAgCu containing minute amounts of rare earth. J. Electron. Mater. 32(4), 235–243 (2003)CrossRef Z.G. Chen, Y.W. Shi, Z.D. Xia et al., Properties of lead-free solder SnAgCu containing minute amounts of rare earth. J. Electron. Mater. 32(4), 235–243 (2003)CrossRef
10.
Zurück zum Zitat J. Zhao, L. Qi, X.M. Wang et al., Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead-free solder. J. Alloy. Compd. 375, 196–201 (2004)CrossRef J. Zhao, L. Qi, X.M. Wang et al., Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead-free solder. J. Alloy. Compd. 375, 196–201 (2004)CrossRef
11.
Zurück zum Zitat J.M. Song, G.F. Lan, T.S. Lui et al., Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys. Scr. Mater. 48, 1047–1051 (2013)CrossRef J.M. Song, G.F. Lan, T.S. Lui et al., Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys. Scr. Mater. 48, 1047–1051 (2013)CrossRef
12.
Zurück zum Zitat S.W. Shin, J. Yu, Creep deformation of Sn–3.5Ag–xCu and Sn–3.5Ag–xBi solder joints. J. Electron. Mater. 34, 188–195 (2005)CrossRef S.W. Shin, J. Yu, Creep deformation of Sn–3.5Ag–xCu and Sn–3.5Ag–xBi solder joints. J. Electron. Mater. 34, 188–195 (2005)CrossRef
13.
Zurück zum Zitat X.D. Liu, Y.D. Han, H.Y. Jing et al., Effect of graphene nanosheets reinforcement on the performance of Sn–Ag–Cu lead-free solder. Mater. Sci. Eng., A 562, 25–32 (2013)CrossRef X.D. Liu, Y.D. Han, H.Y. Jing et al., Effect of graphene nanosheets reinforcement on the performance of Sn–Ag–Cu lead-free solder. Mater. Sci. Eng., A 562, 25–32 (2013)CrossRef
14.
Zurück zum Zitat D.X. Luo, S.B. Xue, Z.Q. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. 25, 3566–3571 (2014) D.X. Luo, S.B. Xue, Z.Q. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. 25, 3566–3571 (2014)
15.
Zurück zum Zitat D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., Novel Fe-containing Sn–1Ag–0.5 Cu lead-free solder alloy with further enhanced elastic compliance and plastic energy dissipation ability for mobile products. Microelectron. Reliab. 52, 2701–2708 (2012)CrossRef D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., Novel Fe-containing Sn–1Ag–0.5 Cu lead-free solder alloy with further enhanced elastic compliance and plastic energy dissipation ability for mobile products. Microelectron. Reliab. 52, 2701–2708 (2012)CrossRef
16.
Zurück zum Zitat H.T. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009)CrossRef H.T. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009)CrossRef
17.
Zurück zum Zitat S. Terashima, T. Kohno, A. Mizusawa et al., Improvement of thermal fatigue properties of Sn–Ag–Cu lead-free solder interconnects on casio’s wafer-level packages based on morphology and grain boundary character. J. Electron. Mater. 38, 33–38 (2009)CrossRef S. Terashima, T. Kohno, A. Mizusawa et al., Improvement of thermal fatigue properties of Sn–Ag–Cu lead-free solder interconnects on casio’s wafer-level packages based on morphology and grain boundary character. J. Electron. Mater. 38, 33–38 (2009)CrossRef
18.
Zurück zum Zitat K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001)CrossRef K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001)CrossRef
19.
Zurück zum Zitat A.A. El-Daly, A.E. Hammad, A. Fawzy et al., Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater. Des. 43, 40–49 (2013)CrossRef A.A. El-Daly, A.E. Hammad, A. Fawzy et al., Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater. Des. 43, 40–49 (2013)CrossRef
20.
Zurück zum Zitat W. Kittidacha, A. Kanjanavikat, K. Vattananiyom, Effect of SAC alloy composition on drop and temp cycle reliability of BGA with NiAu pad finish. Electronics packaging technology conference, 2008 (EPTC 2008) 10th. IEEE, 2008, 1074–1079 W. Kittidacha, A. Kanjanavikat, K. Vattananiyom, Effect of SAC alloy composition on drop and temp cycle reliability of BGA with NiAu pad finish. Electronics packaging technology conference, 2008 (EPTC 2008) 10th. IEEE, 2008, 1074–1079
21.
Zurück zum Zitat D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., Microstructure, mechanical, and thermal properties of the Sn–1Ag–0.5Cu solder alloy bearing Fe for electronics applications. Mater. Sci. Eng. A 551, 160–168 (2012)CrossRef D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., Microstructure, mechanical, and thermal properties of the Sn–1Ag–0.5Cu solder alloy bearing Fe for electronics applications. Mater. Sci. Eng. A 551, 160–168 (2012)CrossRef
22.
Zurück zum Zitat J.H. Lee, A.M. Yu, J.H. Kim et al., Reaction properties and interfacial intermetallics for Sn–xAg–0.5 Cu solders as a function of Ag content. Met. Mater. Int. 14, 649–654 (2008)CrossRef J.H. Lee, A.M. Yu, J.H. Kim et al., Reaction properties and interfacial intermetallics for Sn–xAg–0.5 Cu solders as a function of Ag content. Met. Mater. Int. 14, 649–654 (2008)CrossRef
23.
Zurück zum Zitat D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., High-reliability low-Ag-content Sn–Ag–Cu solder joints for electronics applications. J. Electron. Mater. 41, 2631–2658 (2012)CrossRef D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., High-reliability low-Ag-content Sn–Ag–Cu solder joints for electronics applications. J. Electron. Mater. 41, 2631–2658 (2012)CrossRef
24.
Zurück zum Zitat A.E. Hammad, Investigation of microstructure and mechanical properties of novel Sn–0.5Ag–0.7Cu solders containing small amount of Ni. Mater. Des. 50, 108–116 (2013)CrossRef A.E. Hammad, Investigation of microstructure and mechanical properties of novel Sn–0.5Ag–0.7Cu solders containing small amount of Ni. Mater. Des. 50, 108–116 (2013)CrossRef
25.
Zurück zum Zitat F.X. Che, W.H. Zhu, E.S.W. Poh et al., The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloy Compd. 507, 215–224 (2010)CrossRef F.X. Che, W.H. Zhu, E.S.W. Poh et al., The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloy Compd. 507, 215–224 (2010)CrossRef
26.
Zurück zum Zitat A.E. Hammad, A.A. Ibrahiem, Enhancing the microstructure and tensile creep resistance of Sn–3.0Ag–0.5Cu solder alloy by reinforcing nano-sized ZnO particles. Microelectron. Reliab. 75, 187–194 (2017)CrossRef A.E. Hammad, A.A. Ibrahiem, Enhancing the microstructure and tensile creep resistance of Sn–3.0Ag–0.5Cu solder alloy by reinforcing nano-sized ZnO particles. Microelectron. Reliab. 75, 187–194 (2017)CrossRef
27.
Zurück zum Zitat Y. Tang, S.M. Luo, K.Q. Wang et al., Effect of nano-TiO2 particles on growth of interfacial Cu6Sn5 and Cu3Sn layers in Sn–3.0Ag–0.5Cu–xTiO2 solder joints. J. Alloy Compd. 684, 299–309 (2016)CrossRef Y. Tang, S.M. Luo, K.Q. Wang et al., Effect of nano-TiO2 particles on growth of interfacial Cu6Sn5 and Cu3Sn layers in Sn–3.0Ag–0.5Cu–xTiO2 solder joints. J. Alloy Compd. 684, 299–309 (2016)CrossRef
28.
Zurück zum Zitat A.S. Gain, L.C. Zhang, Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin-bismuth solder. J. Mater. Sci. 28, 15718–15730 (2017) A.S. Gain, L.C. Zhang, Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin-bismuth solder. J. Mater. Sci. 28, 15718–15730 (2017)
29.
Zurück zum Zitat R. Sun, Y.W. Sui, J.Q. Qi et al., Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder. J. Electron. Mater. 46, 4197–4205 (2017)CrossRef R. Sun, Y.W. Sui, J.Q. Qi et al., Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder. J. Electron. Mater. 46, 4197–4205 (2017)CrossRef
30.
Zurück zum Zitat X.Z. Li, Y. Ma, W. Zhou et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Mater. Sci. Eng. A 684, 328–334 (2017)CrossRef X.Z. Li, Y. Ma, W. Zhou et al., Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Mater. Sci. Eng. A 684, 328–334 (2017)CrossRef
31.
Zurück zum Zitat X.W. Hu, Y. Qiu, X.X. Jiang, Y.L. Li, Effect of Cu6Sn5 nanoparticle on thermal behavior, mechanical properties and interfacial reaction of Sn3.0Ag0.5Cu solder alloys. J. Mater. Sci. 29, 15983–15993 (2018) X.W. Hu, Y. Qiu, X.X. Jiang, Y.L. Li, Effect of Cu6Sn5 nanoparticle on thermal behavior, mechanical properties and interfacial reaction of Sn3.0Ag0.5Cu solder alloys. J. Mater. Sci. 29, 15983–15993 (2018)
32.
Zurück zum Zitat X.W. Hu, T. Xu, L.M. Keer et al., Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. 673, 167–177 (2016)CrossRef X.W. Hu, T. Xu, L.M. Keer et al., Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. 673, 167–177 (2016)CrossRef
33.
Zurück zum Zitat A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRef A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRef
34.
Zurück zum Zitat J. Wolfenstine, S. Campos, D. Foster et al., Nano-scale Cu6Sn5 anodes. J. Power. Sour. 109(1), 230–233 (2002)CrossRef J. Wolfenstine, S. Campos, D. Foster et al., Nano-scale Cu6Sn5 anodes. J. Power. Sour. 109(1), 230–233 (2002)CrossRef
35.
Zurück zum Zitat M.S. Niasari, M. Bazarganipour, F. Davar, Nano-sized Cu6Sn5 alloy prepared by a co-precipitation reductive route. Polyhedron 29(7), 1796–1800 (2010)CrossRef M.S. Niasari, M. Bazarganipour, F. Davar, Nano-sized Cu6Sn5 alloy prepared by a co-precipitation reductive route. Polyhedron 29(7), 1796–1800 (2010)CrossRef
36.
Zurück zum Zitat A. Trifonova, M. Wachtler, M.R. Wagner et al., Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ion. 168, 51–59 (2004)CrossRef A. Trifonova, M. Wachtler, M.R. Wagner et al., Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ion. 168, 51–59 (2004)CrossRef
37.
Zurück zum Zitat A. Trifonova, M. Wachtler, M. Winter et al., Sn–Sb and Sn–Bi alloys as anode materials for lithium-ion batteries. Ionics 8, 321–328 (2002)CrossRef A. Trifonova, M. Wachtler, M. Winter et al., Sn–Sb and Sn–Bi alloys as anode materials for lithium-ion batteries. Ionics 8, 321–328 (2002)CrossRef
38.
Zurück zum Zitat L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014)CrossRef L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014)CrossRef
39.
Zurück zum Zitat Y. Zhong, R. An, C. Wang et al., Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections. Small 11(33), 4097–4103 (2015)CrossRef Y. Zhong, R. An, C. Wang et al., Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections. Small 11(33), 4097–4103 (2015)CrossRef
40.
Zurück zum Zitat A.K. Gain, Y.C. Chan, The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn–Ag–Cu solder on OSP-Cu pads. Intermetallics 29, 48–55 (2012)CrossRef A.K. Gain, Y.C. Chan, The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn–Ag–Cu solder on OSP-Cu pads. Intermetallics 29, 48–55 (2012)CrossRef
41.
Zurück zum Zitat P. Liu, P. Yao, J. Liu, Effect of SiC nanoparticle additions on microstructure and microhardness of Sn–Ag–Cu solder alloy. J. Electron. Mater. 37(6), 874–879 (2008)CrossRef P. Liu, P. Yao, J. Liu, Effect of SiC nanoparticle additions on microstructure and microhardness of Sn–Ag–Cu solder alloy. J. Electron. Mater. 37(6), 874–879 (2008)CrossRef
42.
Zurück zum Zitat D.C. Lin, T.S. Srivatsan, G.X. Wang et al., Understanding the influence of copper nanoparticles on thermal characteristics and microstructural development of a tin-silver solder. J. Mater. Eng. Perform. 16(5), 647–654 (2007)CrossRef D.C. Lin, T.S. Srivatsan, G.X. Wang et al., Understanding the influence of copper nanoparticles on thermal characteristics and microstructural development of a tin-silver solder. J. Mater. Eng. Perform. 16(5), 647–654 (2007)CrossRef
43.
Zurück zum Zitat S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, Addition of cobalt nanoparticles into Sn–3.8Ag–0.7Cu lead-free solder by paste mixing. Solder. Surf. Mt. Technol. 23, 10–14 (2011)CrossRef S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, Addition of cobalt nanoparticles into Sn–3.8Ag–0.7Cu lead-free solder by paste mixing. Solder. Surf. Mt. Technol. 23, 10–14 (2011)CrossRef
44.
Zurück zum Zitat J.S. Lee, K.M. Chu, R. Patzelt et al., Effects of Co addition in eutectic Sn–3.5Ag solder on shear strength and microstructural development. Microelectron. Eng. 85(7), 1577–1580 (2008)CrossRef J.S. Lee, K.M. Chu, R. Patzelt et al., Effects of Co addition in eutectic Sn–3.5Ag solder on shear strength and microstructural development. Microelectron. Eng. 85(7), 1577–1580 (2008)CrossRef
45.
Zurück zum Zitat R.K. Chinnam, C. Fauteux, J. Neuenschwander et al., Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification. Acta Mater. 59(4), 1474–1481 (2011)CrossRef R.K. Chinnam, C. Fauteux, J. Neuenschwander et al., Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification. Acta Mater. 59(4), 1474–1481 (2011)CrossRef
46.
Zurück zum Zitat A.A. El-Daly, W.M. Desoky, T.A. Elmosalami et al., Microstructural modifications and properties of SiC nanoparticles-reinforced Sn–3.0Ag–0.5Cu solder alloy. Mater. Des. 65, 1196–1204 (2015)CrossRef A.A. El-Daly, W.M. Desoky, T.A. Elmosalami et al., Microstructural modifications and properties of SiC nanoparticles-reinforced Sn–3.0Ag–0.5Cu solder alloy. Mater. Des. 65, 1196–1204 (2015)CrossRef
47.
Zurück zum Zitat A.T. Tan, A.W. Tan, F. Yusof, Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. J. Alloy. Compd. 705, 188–197 (2017)CrossRef A.T. Tan, A.W. Tan, F. Yusof, Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. J. Alloy. Compd. 705, 188–197 (2017)CrossRef
48.
Zurück zum Zitat M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrate during soldering. J. Alloy Compd. 679, 18–25 (2016)CrossRef M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrate during soldering. J. Alloy Compd. 679, 18–25 (2016)CrossRef
49.
Zurück zum Zitat J. Shen, M.L. Zhao, P.P. He et al., Growth behaviors of intermetallic compounds at Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal aging. J. Alloy Compd. 574, 451–458 (2013)CrossRef J. Shen, M.L. Zhao, P.P. He et al., Growth behaviors of intermetallic compounds at Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal aging. J. Alloy Compd. 574, 451–458 (2013)CrossRef
50.
Zurück zum Zitat X.W. Hu, Y.L. Li, Z.X. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloy Compd. 582, 341–347 (2014)CrossRef X.W. Hu, Y.L. Li, Z.X. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloy Compd. 582, 341–347 (2014)CrossRef
51.
Zurück zum Zitat L.C. Tsao, S.Y. Chang, C.I. Lee et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31, 4831–4835 (2010)CrossRef L.C. Tsao, S.Y. Chang, C.I. Lee et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31, 4831–4835 (2010)CrossRef
52.
Zurück zum Zitat J. Shen, Y.C. Chan, Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn–Ag–Cu solder and a Cu layer. J. Alloy Compd. 477, 909–914 (2009)CrossRef J. Shen, Y.C. Chan, Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn–Ag–Cu solder and a Cu layer. J. Alloy Compd. 477, 909–914 (2009)CrossRef
53.
Zurück zum Zitat L.C. Lsao, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J. Alloy Compd. 509, 2326–2333 (2011)CrossRef L.C. Lsao, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J. Alloy Compd. 509, 2326–2333 (2011)CrossRef
Metadaten
Titel
Effect of Cu6Sn5 nanoparticles size on the properties of Sn0.3Ag0.7Cu nano-composite solders and joints
verfasst von
Zhixian Min
Yu Qiu
Xiaowu Hu
Haozhong Wang
Publikationsdatum
11.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01844-6

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science: Materials in Electronics 15/2019 Zur Ausgabe

Neuer Inhalt