Skip to main content
Erschienen in: Metallurgist 7-8/2022

30.11.2022

Effect of Electrolytic-Plasma Surface Treatment on Structure, Mechanical, and Tribological Properties of Grade 1 Wheel Steel

verfasst von: I. M. Kossanova, A. T. Kanayev, M. A. Jaksymbetova, A. U. Akhmedyanov, K. Zh. Kirgizbayeva

Erschienen in: Metallurgist | Ausgabe 7-8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Results are given for electrolytic-plasma treatment of grade 1 wheel steel. Regime, input, and output parameters of the plasma treatment production system are determined. A modified layer with increased hardness and wear resistance is obtained as a result of electrolytic-plasma treatment. Results of microhardness measurements are obtained, and the microstructure is studied before and after electrolyticplasma treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. T. Kanayev, М. А. Jaxymbetova, and I. М. Kossanova, “Quantitative assessment of the yield stress of ferrite-pearlitic steels by structure parameters,” News of the Nat. Ac. of Sci. of the Republic of Kazakhstan, 447, No. 3, 65–71 (2021). A. T. Kanayev, М. А. Jaxymbetova, and I. М. Kossanova, “Quantitative assessment of the yield stress of ferrite-pearlitic steels by structure parameters,” News of the Nat. Ac. of Sci. of the Republic of Kazakhstan, 447, No. 3, 65–71 (2021).
2.
Zurück zum Zitat A. T. Kanaev, A. V. Bogomolov, and T. E. Sarsembaeva, “Determination of mechanical characteristics plasma hardened wheel steel,” Materials Science and Engineering, 969, No. 1, 20–37 (2020). A. T. Kanaev, A. V. Bogomolov, and T. E. Sarsembaeva, “Determination of mechanical characteristics plasma hardened wheel steel,” Materials Science and Engineering, 969, No. 1, 20–37 (2020).
3.
Zurück zum Zitat G. M. Toktarbaeva, S. K. Alpysbaev, B. K. Rakhadilov, Z. A. Satbaeva, and M. S. Zhaparova, “Effect of electrolytic-plasma surface hardening ob steel 40KhN structure and properties,” Vest. VKBTU, 20, No. 1, 200-205 (2020). G. M. Toktarbaeva, S. K. Alpysbaev, B. K. Rakhadilov, Z. A. Satbaeva, and M. S. Zhaparova, “Effect of electrolytic-plasma surface hardening ob steel 40KhN structure and properties,” Vest. VKBTU, 20, No. 1, 200-205 (2020).
4.
Zurück zum Zitat V.A. Korotkov, “Influence of plasma quenching on the wear resistance of 45 and 40X steel,” Russian Engineering Research, 36, No. 11, 916–919 (2016).CrossRef V.A. Korotkov, “Influence of plasma quenching on the wear resistance of 45 and 40X steel,” Russian Engineering Research, 36, No. 11, 916–919 (2016).CrossRef
5.
Zurück zum Zitat S. V. Petrov and A. G. Saakov, “Technology and equipment for plasma surface hardening of heavy-duty parts,” Materials and Manufacturing Processes, 17, No. 3, 363–378 (2017). S. V. Petrov and A. G. Saakov, “Technology and equipment for plasma surface hardening of heavy-duty parts,” Materials and Manufacturing Processes, 17, No. 3, 363–378 (2017).
6.
Zurück zum Zitat V. A. Korotkov, S. A. Ananyev, and A. V. Shekurov, “Investigation of the effect of the cooling rate on the structure and mechanical properties of metal in plasma quenching,” Welding Intern., 28, No. 2, 140–142 (2014).CrossRef V. A. Korotkov, S. A. Ananyev, and A. V. Shekurov, “Investigation of the effect of the cooling rate on the structure and mechanical properties of metal in plasma quenching,” Welding Intern., 28, No. 2, 140–142 (2014).CrossRef
7.
Zurück zum Zitat B. E. Q’Donnelly, R. L. Reuben, and T. N. Baker, “Quantitative assessment of strengthening parameters in ferrite-pearlite steels from microstructural measurements,” Metals Technology, 11, No. 1, 45–51 (2013).CrossRef B. E. Q’Donnelly, R. L. Reuben, and T. N. Baker, “Quantitative assessment of strengthening parameters in ferrite-pearlite steels from microstructural measurements,” Metals Technology, 11, No. 1, 45–51 (2013).CrossRef
8.
Zurück zum Zitat Zh. M. Ramazanova, K. Zh. Kirgizbayeva, A. U. Akhmedyanov, and M. A. Jaxymbetova, “Influence of the process of microplasma treatment in electrolyte solutions on the oxide coating properties,” Int. J. of Mechanical Engineering and Technology, 12, No. 9, 709–721 (2018). Zh. M. Ramazanova, K. Zh. Kirgizbayeva, A. U. Akhmedyanov, and M. A. Jaxymbetova, “Influence of the process of microplasma treatment in electrolyte solutions on the oxide coating properties,” Int. J. of Mechanical Engineering and Technology, 12, No. 9, 709–721 (2018).
9.
Zurück zum Zitat V. A. Korotkov, “Metallurgical equipment component plasma hardening,” Metallurgist, 58, No. 7–8, 705–711 (2014).CrossRef V. A. Korotkov, “Metallurgical equipment component plasma hardening,” Metallurgist, 58, No. 7–8, 705–711 (2014).CrossRef
10.
Zurück zum Zitat X. Yong, D. Yu, Q Li, P. Huabei, C. Xiuquan, and Ya. Jin, “Effects of thermal plasma jet heat flux characteristics on surface hardening,” J. Mater. Process. Technol., 226, No. 12, 238–246 (2015). X. Yong, D. Yu, Q Li, P. Huabei, C. Xiuquan, and Ya. Jin, “Effects of thermal plasma jet heat flux characteristics on surface hardening,” J. Mater. Process. Technol., 226, No. 12, 238–246 (2015).
11.
Zurück zum Zitat A. Bespalova, V. Lebedev, O. Florenkova, and A. Knysh, “Increasing efficiency of plasma hardening by local cooling of surface by air with negative temperature,” Eastern-European J. of Enterprise Technologies, 4, No. 12, 52–57 (2019).CrossRef A. Bespalova, V. Lebedev, O. Florenkova, and A. Knysh, “Increasing efficiency of plasma hardening by local cooling of surface by air with negative temperature,” Eastern-European J. of Enterprise Technologies, 4, No. 12, 52–57 (2019).CrossRef
12.
Zurück zum Zitat M. F. Yan, B F. Chen, and B. Li, “Microstructure and mechanical properties from an attractive combination of plasma nitriding and secondary hardening of M50 steel,” Applied Surface Science, 455, 1–7 (2018).CrossRef M. F. Yan, B F. Chen, and B. Li, “Microstructure and mechanical properties from an attractive combination of plasma nitriding and secondary hardening of M50 steel,” Applied Surface Science, 455, 1–7 (2018).CrossRef
13.
Zurück zum Zitat Y. Xiang, D. Yu, Q. Li, H. Peng, X. Cao, and J. Yao, “Effects of thermal plasma jet heat flux characteristics on surface hardening,” J. of Materials Proc. Technology, 226, No. 12, 238–246 (2015).CrossRef Y. Xiang, D. Yu, Q. Li, H. Peng, X. Cao, and J. Yao, “Effects of thermal plasma jet heat flux characteristics on surface hardening,” J. of Materials Proc. Technology, 226, No. 12, 238–246 (2015).CrossRef
14.
Zurück zum Zitat V. Martynov, B. Brzhozovsky, E. Zinina, I. Yankin, and A. Susskiy, “Fluctuations in the process plant as a quality assessment criterion of low-temperature plasma hardening process,” Process Engineering, 176, 451–460 (2017). V. Martynov, B. Brzhozovsky, E. Zinina, I. Yankin, and A. Susskiy, “Fluctuations in the process plant as a quality assessment criterion of low-temperature plasma hardening process,” Process Engineering, 176, 451–460 (2017).
15.
Zurück zum Zitat S. Semboshi,A. Iwase, and T. Takasugi, “Surface hardening of age-hardenable Cu–Ti alloy by plasma carburization,” Surface and Coatings Technology, 283, 262–267 (2015).CrossRef S. Semboshi,A. Iwase, and T. Takasugi, “Surface hardening of age-hardenable Cu–Ti alloy by plasma carburization,” Surface and Coatings Technology, 283, 262–267 (2015).CrossRef
16.
Zurück zum Zitat J. P. Lebrun, “Plasma-assisted processes for surface hardening of stainless steel,” Thermochemical Surface Engineering of Steels, 6, No. 16, 615–632 (2015).CrossRef J. P. Lebrun, “Plasma-assisted processes for surface hardening of stainless steel,” Thermochemical Surface Engineering of Steels, 6, No. 16, 615–632 (2015).CrossRef
17.
Zurück zum Zitat M. Esfandiari and H. Dong, “Plasma surface engineering of precipitation hardening stainless steels,” Surface Engineering, 22, No. 2, 86–92 (2006).CrossRef M. Esfandiari and H. Dong, “Plasma surface engineering of precipitation hardening stainless steels,” Surface Engineering, 22, No. 2, 86–92 (2006).CrossRef
18.
Zurück zum Zitat Y. Xiang, D. Yu, X. Cao, Y. Liu, and J. Yao, “Effects of thermal plasma surface hardening on wear and damage properties of rail steel,” Proc. of the Institution of Mechanical Engineers, Part J: J. of Engineering Tribology, 232, No. 7, 787–796 (2017).CrossRef Y. Xiang, D. Yu, X. Cao, Y. Liu, and J. Yao, “Effects of thermal plasma surface hardening on wear and damage properties of rail steel,” Proc. of the Institution of Mechanical Engineers, Part J: J. of Engineering Tribology, 232, No. 7, 787–796 (2017).CrossRef
19.
Zurück zum Zitat G. A. Okolovich, T. G. Sharikova, and E. V. Petrova, “Increase in tool endurance under conditions of the mutual effect of steel wear and fatigue,” Polzunov. Vestnik, No. 2, 33–36 (2015). G. A. Okolovich, T. G. Sharikova, and E. V. Petrova, “Increase in tool endurance under conditions of the mutual effect of steel wear and fatigue,” Polzunov. Vestnik, No. 2, 33–36 (2015).
20.
Zurück zum Zitat V. P. Rasshchupkin and A. A. Akimov, “High-manganese steel fatigue strength and wear resistance,” Omsk. Nauch. Vestn.. No. 35(2), 78–80 (2006). V. P. Rasshchupkin and A. A. Akimov, “High-manganese steel fatigue strength and wear resistance,” Omsk. Nauch. Vestn.. No. 35(2), 78–80 (2006).
Metadaten
Titel
Effect of Electrolytic-Plasma Surface Treatment on Structure, Mechanical, and Tribological Properties of Grade 1 Wheel Steel
verfasst von
I. M. Kossanova
A. T. Kanayev
M. A. Jaksymbetova
A. U. Akhmedyanov
K. Zh. Kirgizbayeva
Publikationsdatum
30.11.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 7-8/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01393-0

Weitere Artikel der Ausgabe 7-8/2022

Metallurgist 7-8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.