Skip to main content
Erschienen in: Microsystem Technologies 5/2020

18.11.2019 | Technical Paper

Effect of heat generation on mixed convection in porous cavity with sinusoidal heated moving lid and uniformly heated or cooled bottom walls

verfasst von: Adel Alblawi, N. Zainuddin, R. Roslan, Mohammad Rahimi-Gorji, N. A. Bakar, Hoang-Thinh Do

Erschienen in: Microsystem Technologies | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effect of heat generation and absorption on mixed convection flows in a sinusoidal heated lid-driven square cavity filled with a porous medium is investigated numerically. Both the vertical walls of the enclosure are insulated while the bottom wall is uniformly heated or cooled. The top wall is moving at a constant speed and is heated sinusoidally. The governing equations and boundary conditions are non-dimensionalized and solved numerically by using finite volume method approach along with SIMPLE algorithm together with non-uniform grid system. The effect of Darcy and heat generation parameters are investigated in terms of the flow, heat transfer, and Nusselt number. The results for stream function and isotherm are plotted and it is found that there have significant influence with the presence of heat generation and porous medium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu-Nada E, Chamkha AJ (2010) Mixed convection flow in a lid-driven inclined square enclosure filled with a nanouid. Eur J Mech B/Fluids 29:472–482CrossRef Abu-Nada E, Chamkha AJ (2010) Mixed convection flow in a lid-driven inclined square enclosure filled with a nanouid. Eur J Mech B/Fluids 29:472–482CrossRef
Zurück zum Zitat Adesanya SO, Souayeh B, Rahimi-Gorji M, Khan MN, Adeyemi OG (2019) Heat irreversibiility analysis for a couple stress fluid flow in an inclined channel with isothermal boundaries. J Taiwan Inst Chem Eng 101:251–258CrossRef Adesanya SO, Souayeh B, Rahimi-Gorji M, Khan MN, Adeyemi OG (2019) Heat irreversibiility analysis for a couple stress fluid flow in an inclined channel with isothermal boundaries. J Taiwan Inst Chem Eng 101:251–258CrossRef
Zurück zum Zitat Akermi M, Jaballah N, Alarifi IM, Rahimi-Gorji M, Chaabane RB, Ouada HB, Majdoub M (2019) Synthesis and characterization of a novel hydride polymer P-DSBT/ZnO nano-composite for optoelectronic applications. J Mol Liquids 287:110963CrossRef Akermi M, Jaballah N, Alarifi IM, Rahimi-Gorji M, Chaabane RB, Ouada HB, Majdoub M (2019) Synthesis and characterization of a novel hydride polymer P-DSBT/ZnO nano-composite for optoelectronic applications. J Mol Liquids 287:110963CrossRef
Zurück zum Zitat Al-Amiri A (2000) Analysis of momentum ad energy transfer in a lid-driven cavity filled with a porous medium. Int J Heat Mass Transf 43(19):3513–3527CrossRef Al-Amiri A (2000) Analysis of momentum ad energy transfer in a lid-driven cavity filled with a porous medium. Int J Heat Mass Transf 43(19):3513–3527CrossRef
Zurück zum Zitat Arani Abbasian, Sebdani SM, Mahmoodi M, Ardeshiri A, Aliakbari A (2012) Numerical study of mixed convection flow in an lid-driven cavity with sinusoidal heating on sidewalls using nanofluid. Superlattices Microstruct 51:893–911CrossRef Arani Abbasian, Sebdani SM, Mahmoodi M, Ardeshiri A, Aliakbari A (2012) Numerical study of mixed convection flow in an lid-driven cavity with sinusoidal heating on sidewalls using nanofluid. Superlattices Microstruct 51:893–911CrossRef
Zurück zum Zitat Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48:891–912CrossRef Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48:891–912CrossRef
Zurück zum Zitat Basak T, Roy S, Singh SK, Pop I (2010) Analysis of mixed convection in a lid-driven porous square cavity with linearly heated side wall(s). Int J Heat Mass Transf 53:1819–1840CrossRef Basak T, Roy S, Singh SK, Pop I (2010) Analysis of mixed convection in a lid-driven porous square cavity with linearly heated side wall(s). Int J Heat Mass Transf 53:1819–1840CrossRef
Zurück zum Zitat Bettaibi S, Kuznik F, Sediki E (2016) Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Phys A 444:311–326MathSciNetCrossRef Bettaibi S, Kuznik F, Sediki E (2016) Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Phys A 444:311–326MathSciNetCrossRef
Zurück zum Zitat Bhatti MM, Abbas MA (2016) Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex Eng J 55:1017–1023CrossRef Bhatti MM, Abbas MA (2016) Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex Eng J 55:1017–1023CrossRef
Zurück zum Zitat Bhatti MM, Ellahi R, Zeeshan A (2016) Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J Mol Liq 222:101–108CrossRef Bhatti MM, Ellahi R, Zeeshan A (2016) Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J Mol Liq 222:101–108CrossRef
Zurück zum Zitat Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246CrossRef Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246CrossRef
Zurück zum Zitat Bhatti MM, Zeeshan A, Ellahi R, Anwar Bég O, Kadir A (2019) Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chin J Phys 58:222–223CrossRef Bhatti MM, Zeeshan A, Ellahi R, Anwar Bég O, Kadir A (2019) Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chin J Phys 58:222–223CrossRef
Zurück zum Zitat Chamkha AJ (2002) Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption. Numerical Heat Transfer 41:529–546CrossRef Chamkha AJ (2002) Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption. Numerical Heat Transfer 41:529–546CrossRef
Zurück zum Zitat Das S, Sahoo RK (1999) Effect of Darcy, fluid Rayleigh and heat generation parameters in natural convection in a porous square enclosure: a Brinkman-extended Darcy model. Int Commun Heat Mass Transfer 26(4):569–578CrossRef Das S, Sahoo RK (1999) Effect of Darcy, fluid Rayleigh and heat generation parameters in natural convection in a porous square enclosure: a Brinkman-extended Darcy model. Int Commun Heat Mass Transfer 26(4):569–578CrossRef
Zurück zum Zitat D’Orazio A, Karimipour A, Nezhad AH, Shirani E (2015) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50:945–962MathSciNetCrossRef D’Orazio A, Karimipour A, Nezhad AH, Shirani E (2015) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50:945–962MathSciNetCrossRef
Zurück zum Zitat Elsherbiny SM, Ismail OI (2015) Heat transfer in inclined air rectangular cavities with two localized heat sources. Alex Eng J 54:917–927CrossRef Elsherbiny SM, Ismail OI (2015) Heat transfer in inclined air rectangular cavities with two localized heat sources. Alex Eng J 54:917–927CrossRef
Zurück zum Zitat Imberger J, Hamblin PF (1982) Dynamics of lakes, reservoirs, and cooling ponds. Rev Fluid Mech 14:153–187CrossRef Imberger J, Hamblin PF (1982) Dynamics of lakes, reservoirs, and cooling ponds. Rev Fluid Mech 14:153–187CrossRef
Zurück zum Zitat Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf 36(6):1601–1608CrossRef Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf 36(6):1601–1608CrossRef
Zurück zum Zitat Kahshan M, Dianchen L, Rahimi-Gorji M (2019) Hydrodynamical study of flow in a permeable channel: application to flat plate dialyzer. Int J Hydrogen Energy 44(31):17041–17047CrossRef Kahshan M, Dianchen L, Rahimi-Gorji M (2019) Hydrodynamical study of flow in a permeable channel: application to flat plate dialyzer. Int J Hydrogen Energy 44(31):17041–17047CrossRef
Zurück zum Zitat Kefayati GHR (2014) Mixed convection of non-Newtonian nanofluids ows in a lid-driven enclosure with sinusoidal temperature profile using FDLBM. Powder Technol 266:268–281CrossRef Kefayati GHR (2014) Mixed convection of non-Newtonian nanofluids ows in a lid-driven enclosure with sinusoidal temperature profile using FDLBM. Powder Technol 266:268–281CrossRef
Zurück zum Zitat Kefayati GHR (2015) FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci 95:29–46CrossRef Kefayati GHR (2015) FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci 95:29–46CrossRef
Zurück zum Zitat Khanafer KM, Chamkha AJ (1998) Hydromagnetic natural convection from an inclined porous square enclosure with heat generation. Numer Heat Transf 33(8):891–910CrossRef Khanafer KM, Chamkha AJ (1998) Hydromagnetic natural convection from an inclined porous square enclosure with heat generation. Numer Heat Transf 33(8):891–910CrossRef
Zurück zum Zitat Khanafer KM, Chamkha AJ (1999) Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf 42:2465–2481CrossRef Khanafer KM, Chamkha AJ (1999) Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf 42:2465–2481CrossRef
Zurück zum Zitat Khanafer K, Vafai K (2002) Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid saturated porous medium. Numer Heat Transf A 42:465–486CrossRef Khanafer K, Vafai K (2002) Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid saturated porous medium. Numer Heat Transf A 42:465–486CrossRef
Zurück zum Zitat Lage JL (1992) Effect of the convective inertia term on Benard convection in a porous medium. Numer Heat Transf 22:469–485CrossRef Lage JL (1992) Effect of the convective inertia term on Benard convection in a porous medium. Numer Heat Transf 22:469–485CrossRef
Zurück zum Zitat Louaraychi A, Lamsaadi M, Naïmi M, El-Harfi H, Kaddiri M, Raji A, Hasnaoui M (2019) Mixed convection heat transfer correlations in shallow rectangular cavities with single and double-lid driven boundaries. Int J Heat Mass Transf 132:394–406CrossRef Louaraychi A, Lamsaadi M, Naïmi M, El-Harfi H, Kaddiri M, Raji A, Hasnaoui M (2019) Mixed convection heat transfer correlations in shallow rectangular cavities with single and double-lid driven boundaries. Int J Heat Mass Transf 132:394–406CrossRef
Zurück zum Zitat Mahapatra TR, Pal D, Mondal S (2013) Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation. Int Commun Heat Mass Transf 41:47–56CrossRef Mahapatra TR, Pal D, Mondal S (2013) Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation. Int Commun Heat Mass Transf 41:47–56CrossRef
Zurück zum Zitat Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35(8):1881–1892CrossRef Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35(8):1881–1892CrossRef
Zurück zum Zitat Muthtamilselvan M, Doh DH (2014a) Magnetic field effect on mixed convection in a lid-driven square cavity filled with nanofluids. J Mech Sci Technol 28:137–143CrossRef Muthtamilselvan M, Doh DH (2014a) Magnetic field effect on mixed convection in a lid-driven square cavity filled with nanofluids. J Mech Sci Technol 28:137–143CrossRef
Zurück zum Zitat Muthtamilselvan M, Doh DH (2014b) Mixed convection of heat generating nanouid in a lid-driven cavity with uniform and non-uniform heating of bottom wall. Appl Math Model 38:3164–3174MathSciNetCrossRef Muthtamilselvan M, Doh DH (2014b) Mixed convection of heat generating nanouid in a lid-driven cavity with uniform and non-uniform heating of bottom wall. Appl Math Model 38:3164–3174MathSciNetCrossRef
Zurück zum Zitat Muthtamilselvan M, Das MK, Kandaswamy P (2010a) Convection in a lid-driven heat-generating porous cavity with alternative thermal boundary conditions. Transp Porous Media 82:337–346CrossRef Muthtamilselvan M, Das MK, Kandaswamy P (2010a) Convection in a lid-driven heat-generating porous cavity with alternative thermal boundary conditions. Transp Porous Media 82:337–346CrossRef
Zurück zum Zitat Muthtamilselvan M, Das MK, Kandaswamy P (2010b) Convection in a lid-driven heat-generating porous cavity with alternative thermal boundary conditions. Transp Porous Media 82:337–346CrossRef Muthtamilselvan M, Das MK, Kandaswamy P (2010b) Convection in a lid-driven heat-generating porous cavity with alternative thermal boundary conditions. Transp Porous Media 82:337–346CrossRef
Zurück zum Zitat Nayak K, Jena PK, Lakshmi Narayana PA (2014) Flow simulation and mixed convection in a lid-driven square cavity with saturated porous media. J Porous Media 17(6):537–548CrossRef Nayak K, Jena PK, Lakshmi Narayana PA (2014) Flow simulation and mixed convection in a lid-driven square cavity with saturated porous media. J Porous Media 17(6):537–548CrossRef
Zurück zum Zitat Nield DA, Bejan A (1998) Convection in porous media. Springer-Verlag, New YorkMATH Nield DA, Bejan A (1998) Convection in porous media. Springer-Verlag, New YorkMATH
Zurück zum Zitat Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, D CMATH Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, D CMATH
Zurück zum Zitat Pekmen, Tezer-Sezgin M (2014) MHD flow and heat transfer in a lid-driven porous enclosure. Comput Fluids 89:191–199MathSciNetCrossRef Pekmen, Tezer-Sezgin M (2014) MHD flow and heat transfer in a lid-driven porous enclosure. Comput Fluids 89:191–199MathSciNetCrossRef
Zurück zum Zitat Pilkington LAB (1969) Review Lecture: the float glass process. Proc R Soc Lond IA 314:1–25 Pilkington LAB (1969) Review Lecture: the float glass process. Proc R Soc Lond IA 314:1–25
Zurück zum Zitat Saha S, Hasan MN, Saha G and Islam MQ (2010) Effect of inclination angle on mixed convection in a lid-driven square enclosure with internal heat generation or absorption. In: International conference on mechanical, industrial and energy engineering Saha S, Hasan MN, Saha G and Islam MQ (2010) Effect of inclination angle on mixed convection in a lid-driven square enclosure with internal heat generation or absorption. In: International conference on mechanical, industrial and energy engineering
Zurück zum Zitat Sivasankaran S, Sivakumar V, Prakash P (2010) Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both side walls. Int J Heat Mass Transf 53:4304–4315CrossRef Sivasankaran S, Sivakumar V, Prakash P (2010) Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both side walls. Int J Heat Mass Transf 53:4304–4315CrossRef
Zurück zum Zitat Vishnuvardhanarao E, Das MK (2008) Laminar mixed convection in a parallel two-sided lid-driven differentially heated square cavity filled with a fluid-saturated porous medium. Numer Heat Transf A 53:88–110CrossRef Vishnuvardhanarao E, Das MK (2008) Laminar mixed convection in a parallel two-sided lid-driven differentially heated square cavity filled with a fluid-saturated porous medium. Numer Heat Transf A 53:88–110CrossRef
Zurück zum Zitat Zainuddin N, Sufahani SF, Karimipour A, Ali M, Roslan R (2018) Hydromagnetic mixed convection flow in an inclined cavity. JP J Heat Mass Transf 15(3):543–568CrossRef Zainuddin N, Sufahani SF, Karimipour A, Ali M, Roslan R (2018) Hydromagnetic mixed convection flow in an inclined cavity. JP J Heat Mass Transf 15(3):543–568CrossRef
Metadaten
Titel
Effect of heat generation on mixed convection in porous cavity with sinusoidal heated moving lid and uniformly heated or cooled bottom walls
verfasst von
Adel Alblawi
N. Zainuddin
R. Roslan
Mohammad Rahimi-Gorji
N. A. Bakar
Hoang-Thinh Do
Publikationsdatum
18.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04690-y

Weitere Artikel der Ausgabe 5/2020

Microsystem Technologies 5/2020 Zur Ausgabe

Neuer Inhalt