Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

17.08.2018

Effect of Heat Treatment and Combination of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Titanium Alloy Ti6Al2V2Zr1.5Mo

verfasst von: R. K. Gupta, V. Anil Kumar, Rishi Gaur, Bhavanish Kumar Singh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The heat treatment and cold rolling combinations have been carried out on titanium alloy Ti6Al2V2Zr1.5Mo, and microstructure evolution and mechanical behavior have been studied. Solution treatment below the β-transus temperature, followed by air cooling, resulted in higher microhardness/strength as compared to the same with water quenching. A sudden drop in microhardness/strength is observed in sample solution heat-treated above β-transus temperature followed by air cooling. The former is attributed to the additional presence of fine secondary α-phase formed by dynamic aging during air cooling as compared to water-quenched samples which did not have fine secondary α-phase. Solution treatment above β-transus temperature resulted in Widmanstatten microstructure with no significant fine secondary α in air-cooled samples. Among the studied conditions of cold rolling (CR), gain in strength of the alloy from annealed condition is significant with first 15% reduction and thereafter it is marginal for 30% reduction. Initiation of cracks at the edges has been observed in 30% CR. The microstructure of cold-rolled samples confirms the fragmentation of α-plates with the presence of high dislocation density. Heat treatment of cold-rolled samples resulted in significant reduction in strength from the as-cold-rolled conditions. The marginally lower strength than the as-received (annealed) or heat-treated alloy samples is due to the recrystallization in CR samples and the formation of Widmanstatten microstructure in air-cooled samples. The alloy does not have fine secondary α or regions with large dislocation density in this condition. The microstructure in the samples heat-treated (with air cooling) below as well as above β-transus temperature (after CR) is similar to air-cooled samples (without prior CR) with heat treatment above β-transus temperature. This indicates the reduction in recrystallization temperature with cold working, which is substantiated with the reduction in strength as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.J. Donachie, Jr., Titanium: A Technical Guide, ASM International, Metals Park, 2000 M.J. Donachie, Jr., Titanium: A Technical Guide, ASM International, Metals Park, 2000
2.
Zurück zum Zitat V.N. Moiseyev, Titanium Alloys, Russian Aircraft and Aerospace Applications, Taylor and Francis Group, Milton Park, 2006, p 80–82 V.N. Moiseyev, Titanium Alloys, Russian Aircraft and Aerospace Applications, Taylor and Francis Group, Milton Park, 2006, p 80–82
3.
Zurück zum Zitat S. Tamirisakandala, B.V. Vedam, and R.B. Bhat, Recent Advances in the Deformation Processing of Titanium Alloys, J. Mater. Eng. Perform., 2003, 12, p 661–673CrossRef S. Tamirisakandala, B.V. Vedam, and R.B. Bhat, Recent Advances in the Deformation Processing of Titanium Alloys, J. Mater. Eng. Perform., 2003, 12, p 661–673CrossRef
4.
Zurück zum Zitat D.R.N. Correa, F.B. Vicente, R.O. Araujo, M.L. Lourenco, P.A.B. Kuroda, M.A.R. Buzalaf, and C.R. Grandini, Effect of Substitutional Elements on the Microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo Systems Alloys, J. Mater. Res. Technol., 2015, 4(2), p 180–185CrossRef D.R.N. Correa, F.B. Vicente, R.O. Araujo, M.L. Lourenco, P.A.B. Kuroda, M.A.R. Buzalaf, and C.R. Grandini, Effect of Substitutional Elements on the Microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo Systems Alloys, J. Mater. Res. Technol., 2015, 4(2), p 180–185CrossRef
5.
Zurück zum Zitat C. Huang, Y. Zhao, S. Xin, C.S. Tan, W. Zhou, Q. Li, and W. Zeng, High Cycle Fatigue Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Titanium Alloy with Lamellar Microstructure, Mater. Sci. Eng. A, 2017, 68, p 107–116CrossRef C. Huang, Y. Zhao, S. Xin, C.S. Tan, W. Zhou, Q. Li, and W. Zeng, High Cycle Fatigue Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Titanium Alloy with Lamellar Microstructure, Mater. Sci. Eng. A, 2017, 68, p 107–116CrossRef
6.
Zurück zum Zitat C. Veiga, J.P. Davim, and A.J.R. Loureiro, Properties and Applications of Titanium Alloy A Brief review, Rev. Adv. Mater. Sci., 2012, 32, p 133–148 C. Veiga, J.P. Davim, and A.J.R. Loureiro, Properties and Applications of Titanium Alloy A Brief review, Rev. Adv. Mater. Sci., 2012, 32, p 133–148
7.
Zurück zum Zitat H.M. Li, M.Q. Li, J. Luo, and K. Wang, Microstructure & Mechanical Properties of Heat Treated Ti-5Al-2Sn-2Zr-4Mo-4Cr, Trans. Non ferrous Met. Soc. China, 2015, 25, p 2893–2900CrossRef H.M. Li, M.Q. Li, J. Luo, and K. Wang, Microstructure & Mechanical Properties of Heat Treated Ti-5Al-2Sn-2Zr-4Mo-4Cr, Trans. Non ferrous Met. Soc. China, 2015, 25, p 2893–2900CrossRef
8.
Zurück zum Zitat R. Charlie, Brooks: Heat Treatment, Structure and Properties of Nonferrous Alloys, American Society For Metals, Ohio, 1982 R. Charlie, Brooks: Heat Treatment, Structure and Properties of Nonferrous Alloys, American Society For Metals, Ohio, 1982
9.
Zurück zum Zitat M.A. Imam, A.C. Fraker: Titanium Alloys as Implant Materials in Medical Applications of Titanium and its Alloys (STP 1272, S.A. Brown and J.E. Lemons American Society for Testing and Materials, 1996) M.A. Imam, A.C. Fraker: Titanium Alloys as Implant Materials in Medical Applications of Titanium and its Alloys (STP 1272, S.A. Brown and J.E. Lemons American Society for Testing and Materials, 1996)
10.
Zurück zum Zitat F. Wagner, N. Bozzolo, O. Van Landuyt, and T. Grosdidier, Evolution of Recrystallization Texture and Microstructure in Low Alloyed Titanium Sheets, Acta Mater., 2002, 50, p 1245–1259CrossRef F. Wagner, N. Bozzolo, O. Van Landuyt, and T. Grosdidier, Evolution of Recrystallization Texture and Microstructure in Low Alloyed Titanium Sheets, Acta Mater., 2002, 50, p 1245–1259CrossRef
11.
Zurück zum Zitat F.M. Güçlü and H. Çimenoğlu, The Recrystallization Behaviour of CP-Titanium, Mater. Sci. For., 2004, 467–470, p 459–464 F.M. Güçlü and H. Çimenoğlu, The Recrystallization Behaviour of CP-Titanium, Mater. Sci. For., 2004, 467–470, p 459–464
12.
Zurück zum Zitat M. Li, Y. Geng, C. Chen, S. Pang, and T. Zhang, Effects of Cold-rolling Reduction on Microstructure and Mechanical Properties of Ti50Zr30Nb10Ta10 Alloy, Mater. Sci. For., 2016, 849, p 376–382 M. Li, Y. Geng, C. Chen, S. Pang, and T. Zhang, Effects of Cold-rolling Reduction on Microstructure and Mechanical Properties of Ti50Zr30Nb10Ta10 Alloy, Mater. Sci. For., 2016, 849, p 376–382
13.
Zurück zum Zitat R.K. Gupta, V. Anil Kumar, C. Mathew, and G. Sudarshana Rao, Strain Hardening of Titanium Alloys Ti6Al4V Sheets with Prior Heat Treatment & Cold Working, Mater. Sci. Eng. A, 2016, 662, p 537–550CrossRef R.K. Gupta, V. Anil Kumar, C. Mathew, and G. Sudarshana Rao, Strain Hardening of Titanium Alloys Ti6Al4V Sheets with Prior Heat Treatment & Cold Working, Mater. Sci. Eng. A, 2016, 662, p 537–550CrossRef
14.
Zurück zum Zitat G. Choi and K. Lee, Effect of Cold Rolling on the Microstructural Evolution of New β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr Alloys, Mater. Char., 2017, 123, p 67–74CrossRef G. Choi and K. Lee, Effect of Cold Rolling on the Microstructural Evolution of New β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr Alloys, Mater. Char., 2017, 123, p 67–74CrossRef
15.
Zurück zum Zitat J. Babu, A. Dutta, and A. Kumaraswamy, Experimental Studies on Effect of Temperature and Strain Rate on Deformation Behavior of Ti-6Al-4V Using Taguchi Method, Procedia Mater. Sci., 2014, 2014(6), p 1121–1130CrossRef J. Babu, A. Dutta, and A. Kumaraswamy, Experimental Studies on Effect of Temperature and Strain Rate on Deformation Behavior of Ti-6Al-4V Using Taguchi Method, Procedia Mater. Sci., 2014, 2014(6), p 1121–1130CrossRef
16.
Zurück zum Zitat G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design, ASM International, Materials Park, 2003 G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design, ASM International, Materials Park, 2003
17.
Zurück zum Zitat V.I. Muravev, A.V. Yakimov, and A.V. Chernyshev, Effect of Deformation, Welding and Electro Contact Heating on the Properties of Titanium Alloy VT20 in Pressed and Welded Structures, Met. Sci. Heat Treat., 2003, 45, p 419–422CrossRef V.I. Muravev, A.V. Yakimov, and A.V. Chernyshev, Effect of Deformation, Welding and Electro Contact Heating on the Properties of Titanium Alloy VT20 in Pressed and Welded Structures, Met. Sci. Heat Treat., 2003, 45, p 419–422CrossRef
18.
Zurück zum Zitat V. Anil Kumar, R.K. Gupta, J. Paul Murugan, J. Srinath, Sushant K. Manwatkar, and S.V.S. Narayana Murty, Effect of Cooling Medium on Solution Treatment Response of Titanium Alloy Ti-5Al-5V-2Mo, Mater. Sci. For., 2015, 830–831, p 123–126 V. Anil Kumar, R.K. Gupta, J. Paul Murugan, J. Srinath, Sushant K. Manwatkar, and S.V.S. Narayana Murty, Effect of Cooling Medium on Solution Treatment Response of Titanium Alloy Ti-5Al-5V-2Mo, Mater. Sci. For., 2015, 830–831, p 123–126
19.
Zurück zum Zitat R.K. Gupta, V. Anil Kumar, U.V. Gururaja, K. Subramani, U. Prakash, K.V.A. Chakravarthi, P. Ramkumar, and P. Sarkar, Solution Treatment and Aging of Thick Rings from Titanium Alloy Ti6Al4V, Met. Sci. Heat Treat., 2015, 573–574, p 169–174CrossRef R.K. Gupta, V. Anil Kumar, U.V. Gururaja, K. Subramani, U. Prakash, K.V.A. Chakravarthi, P. Ramkumar, and P. Sarkar, Solution Treatment and Aging of Thick Rings from Titanium Alloy Ti6Al4V, Met. Sci. Heat Treat., 2015, 573–574, p 169–174CrossRef
20.
Zurück zum Zitat O.M. Ivasishin, P.E. Markovsy, S.L. Semiatin, and C.H. Ward, Aging Response of Coarse- and Fine- Grained Beta Titanium Alloys, Mater. Sci. Eng. A, 2005, 405, p 296–305CrossRef O.M. Ivasishin, P.E. Markovsy, S.L. Semiatin, and C.H. Ward, Aging Response of Coarse- and Fine- Grained Beta Titanium Alloys, Mater. Sci. Eng. A, 2005, 405, p 296–305CrossRef
21.
Zurück zum Zitat C.J. Boehlert, D.M. Dimiduk, and K.J. Hemker, The Phase Evaluation, Mechanical Behavior, and Microstructural Instability of Fully Lamellar Ti-46Al (at.%) Alloy, Scripta Mater., 2002, 46, p 259–267CrossRef C.J. Boehlert, D.M. Dimiduk, and K.J. Hemker, The Phase Evaluation, Mechanical Behavior, and Microstructural Instability of Fully Lamellar Ti-46Al (at.%) Alloy, Scripta Mater., 2002, 46, p 259–267CrossRef
22.
Zurück zum Zitat A.K. Singh and R.A. Schwarzer, Effects of Mode of Deformation by Rolling on the Development of Texture in Binary Ti-Mn Alloys, Scripta Mater., 2001, 44, p 375–380CrossRef A.K. Singh and R.A. Schwarzer, Effects of Mode of Deformation by Rolling on the Development of Texture in Binary Ti-Mn Alloys, Scripta Mater., 2001, 44, p 375–380CrossRef
23.
Zurück zum Zitat Z. Guo, S. Malinov, and W. Sha, Modelling β Transus Temperature of Titanium Alloys using Artificial Neural Network, Comput. Mater. Sci., 2005, 32(1), p 1–12CrossRef Z. Guo, S. Malinov, and W. Sha, Modelling β Transus Temperature of Titanium Alloys using Artificial Neural Network, Comput. Mater. Sci., 2005, 32(1), p 1–12CrossRef
24.
Zurück zum Zitat H. Takebe, K. Mori, K. Takahashi, H. Fujii, Effects of Thickness and Grain Size on Tensile Properties of Pure Titanium Thin Gauge Sheets, in Proceedings of the 13th World Conference on Titanium, The Minerals, Metals and Materials Society (2016), pp. 491–494 H. Takebe, K. Mori, K. Takahashi, H. Fujii, Effects of Thickness and Grain Size on Tensile Properties of Pure Titanium Thin Gauge Sheets, in Proceedings of the 13th World Conference on Titanium, The Minerals, Metals and Materials Society (2016), pp. 491–494
25.
Zurück zum Zitat T. Fukumaru, H. Hidaka, T. Tsuchiyama, and S. Takaki, Effect of Wire Diameter and Grain Size on Tensile Properties of Austenitic Stainless Steel Wire, Bull Iron Steel Inst. Jpn., 2005, 91, p 828–833CrossRef T. Fukumaru, H. Hidaka, T. Tsuchiyama, and S. Takaki, Effect of Wire Diameter and Grain Size on Tensile Properties of Austenitic Stainless Steel Wire, Bull Iron Steel Inst. Jpn., 2005, 91, p 828–833CrossRef
26.
Zurück zum Zitat O.D. Lai, W.K. Lu, and C.U.I. Xia, Dynamic Recrystallization of Ti-6Al-2Zr-1Mo-1V in Beta Forging Process, Trans. Nonferrous Met. Soc. China, 2012, 22(4), p 761–767CrossRef O.D. Lai, W.K. Lu, and C.U.I. Xia, Dynamic Recrystallization of Ti-6Al-2Zr-1Mo-1V in Beta Forging Process, Trans. Nonferrous Met. Soc. China, 2012, 22(4), p 761–767CrossRef
27.
Zurück zum Zitat E.A. Metzbower, Stacking Fault Probability Determinations in HCP Ti-Al Alloys, Metall. Mater. Trans., 1971, 2(11), p 3099–3103CrossRef E.A. Metzbower, Stacking Fault Probability Determinations in HCP Ti-Al Alloys, Metall. Mater. Trans., 1971, 2(11), p 3099–3103CrossRef
28.
Zurück zum Zitat Z. Guo, A.P. Miodownik, N. Saunders, and J.P. Schillé, Influence of Stacking Fault Energy on High Temperature Creep of Alpha Titanium Alloys, Scripta Mater., 2006, 54(12), p 2175–2178CrossRef Z. Guo, A.P. Miodownik, N. Saunders, and J.P. Schillé, Influence of Stacking Fault Energy on High Temperature Creep of Alpha Titanium Alloys, Scripta Mater., 2006, 54(12), p 2175–2178CrossRef
29.
Zurück zum Zitat E.A. Holm, K.J. Healey, and C.C. Battaile, Coupled Computer Simulations of Recrystallization in Deformed Polycrystals, Mater. Sci. For., 2004, 467–470, p 641–646 E.A. Holm, K.J. Healey, and C.C. Battaile, Coupled Computer Simulations of Recrystallization in Deformed Polycrystals, Mater. Sci. For., 2004, 467–470, p 641–646
30.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 2004
31.
Zurück zum Zitat J. Go, W.J. Poole, M. Militzer, and M.A. Wells, Modelling Recovery and Recrystallisation during Annealing of AA 5754 Aluminium Alloy, Mater. Sci. Technol., 2003, 19(10), p 1361–1368CrossRef J. Go, W.J. Poole, M. Militzer, and M.A. Wells, Modelling Recovery and Recrystallisation during Annealing of AA 5754 Aluminium Alloy, Mater. Sci. Technol., 2003, 19(10), p 1361–1368CrossRef
32.
Zurück zum Zitat F.J. Humphreys, A Unified Theory of Recovery, Recrystallization and Grain Growth, based on the Stability and Growth of Cellular Microstructures-I. The Basic Model, Acta Mater., 1997, 45(10), p 4231–4240CrossRef F.J. Humphreys, A Unified Theory of Recovery, Recrystallization and Grain Growth, based on the Stability and Growth of Cellular Microstructures-I. The Basic Model, Acta Mater., 1997, 45(10), p 4231–4240CrossRef
33.
Zurück zum Zitat M. Blicharski, S. Nourbakhsh, and J. Nutting, Structure and Properties of Plastically Deformed α-Ti, Met. Sci., 1979, 13(9), p 516–522CrossRef M. Blicharski, S. Nourbakhsh, and J. Nutting, Structure and Properties of Plastically Deformed α-Ti, Met. Sci., 1979, 13(9), p 516–522CrossRef
34.
Zurück zum Zitat J.W. Won, T. Lee, S. Hong, Y. Lee, J.H. Lee, and C.S. Lee, Role of Deformation Twins in Static Recrystallization Kinetics of High-Purity Alpha Titanium, Met. Mater. Int., 2016, 22(6), p 1041–1048CrossRef J.W. Won, T. Lee, S. Hong, Y. Lee, J.H. Lee, and C.S. Lee, Role of Deformation Twins in Static Recrystallization Kinetics of High-Purity Alpha Titanium, Met. Mater. Int., 2016, 22(6), p 1041–1048CrossRef
Metadaten
Titel
Effect of Heat Treatment and Combination of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Titanium Alloy Ti6Al2V2Zr1.5Mo
verfasst von
R. K. Gupta
V. Anil Kumar
Rishi Gaur
Bhavanish Kumar Singh
Publikationsdatum
17.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3576-3

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.