Skip to main content

2015 | OriginalPaper | Buchkapitel

4. Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis

verfasst von : G. Magnacca, E. Laurenti, M. C. Gonzalez

Erschienen in: Soluble Bio-based Substances Isolated From Urban Wastes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Humic substances were widely studied for preparing materials to be used for adsorption, photocatalysis and so on. Their parent soluble bio-organic materials (SBO) have potentially similar applications which have to be evaluated. The main advantage of the use of SBO substances concerns their low cost, but they are appealing also for the development of a strategy of recycle and reuse of wastes which needs to be followed worldwide. The application of SBO in materials synthesis is promizing, since they can be used as synthesis intermediates but also as active phases for developing adsorbing and/or photoactive materials usable for environmental applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dudare, D., & Klavins, M. (2013). Peat humic substances as sorbent for nanomaterials. In 13th SGEM GeoConference on Nano, Bio and Green-Technologies for a Sustainable Future (pp. 67–74.). www.sgem.org, SGEM2013 Conference Proceedings. ISBN 978-619-7105-06-3/ISSN 1314-2704. Dudare, D., & Klavins, M. (2013). Peat humic substances as sorbent for nanomaterials. In 13th SGEM GeoConference on Nano, Bio and Green-Technologies for a Sustainable Future (pp. 67–74.). www.​sgem.​org, SGEM2013 Conference Proceedings. ISBN 978-619-7105-06-3/ISSN 1314-2704.
2.
Zurück zum Zitat Montoneri, E., Boffa, V., Quagliotto, P. L., Mendich, R., Chierotti, M. R., Gobetto, R., & Medana, C. (2008). Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources, 3, 123–141. Montoneri, E., Boffa, V., Quagliotto, P. L., Mendich, R., Chierotti, M. R., Gobetto, R., & Medana, C. (2008). Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources, 3, 123–141.
3.
Zurück zum Zitat Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Bianco Prevot, A., et al. (2008). Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources, 3, 217–233. Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Bianco Prevot, A., et al. (2008). Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources, 3, 217–233.
4.
Zurück zum Zitat Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.CrossRef Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.CrossRef
5.
Zurück zum Zitat Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43, 4249–4257.CrossRef Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43, 4249–4257.CrossRef
6.
Zurück zum Zitat Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., & Schultz, B. J. (2013). Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science and Technology, 47, 757–764.CrossRef Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., & Schultz, B. J. (2013). Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science and Technology, 47, 757–764.CrossRef
7.
Zurück zum Zitat Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.CrossRef Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.CrossRef
8.
Zurück zum Zitat Ohashi, H., & Nakazawa, H. (1996). The microstructure of humic acid montmorillonite composites. Clay Minerals, 31, 347–354.CrossRef Ohashi, H., & Nakazawa, H. (1996). The microstructure of humic acid montmorillonite composites. Clay Minerals, 31, 347–354.CrossRef
9.
Zurück zum Zitat Illés, E., & Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295, 115–123.CrossRef Illés, E., & Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295, 115–123.CrossRef
10.
Zurück zum Zitat Maris, K., & Linda, A. (2009). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362. Maris, K., & Linda, A. (2009). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362.
11.
Zurück zum Zitat Klavins, M., Ansone, L., & Zicmanis, A. (2011). Behaviour of nanomaterials in the environment: A study of interaction between humic acids and fullerene C60. Latvian Journal of Chemistry, 49, 283–293. Klavins, M., Ansone, L., & Zicmanis, A. (2011). Behaviour of nanomaterials in the environment: A study of interaction between humic acids and fullerene C60. Latvian Journal of Chemistry, 49, 283–293.
12.
Zurück zum Zitat Chappell, M. A., George, A. J., Dontsova, K. M., Porter, B. E., Price, C. L., Zhou, P., et al. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 157, 1081–1087.CrossRef Chappell, M. A., George, A. J., Dontsova, K. M., Porter, B. E., Price, C. L., Zhou, P., et al. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 157, 1081–1087.CrossRef
13.
Zurück zum Zitat Chen, K., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environmental Science and Technology, 42, 7607–7614.CrossRef Chen, K., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environmental Science and Technology, 42, 7607–7614.CrossRef
14.
Zurück zum Zitat Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468–469, 1014–1027.CrossRef Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468–469, 1014–1027.CrossRef
15.
Zurück zum Zitat Liu, J.-F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.CrossRef Liu, J.-F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.CrossRef
16.
Zurück zum Zitat Amstaetter, K., Borch, T., & Kappler, A. (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85, 326–341.CrossRef Amstaetter, K., Borch, T., & Kappler, A. (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85, 326–341.CrossRef
17.
Zurück zum Zitat Sanchez, C., Julian, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 3559–3592.CrossRef Sanchez, C., Julian, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 3559–3592.CrossRef
18.
Zurück zum Zitat Mercado, D. F., Magnacca, G., Malandrino, M., Rubert, A., Montoneri, E., Celi, L., et al. (2014). Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A Bio-organic substrates-mediated synthesis. ACS Applied Materials and Interface, 6, 3937–3946.CrossRef Mercado, D. F., Magnacca, G., Malandrino, M., Rubert, A., Montoneri, E., Celi, L., et al. (2014). Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A Bio-organic substrates-mediated synthesis. ACS Applied Materials and Interface, 6, 3937–3946.CrossRef
19.
Zurück zum Zitat Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environment Issues, 11, 170–196.CrossRef Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environment Issues, 11, 170–196.CrossRef
20.
Zurück zum Zitat Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef
21.
Zurück zum Zitat Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste derived bioorganic substances for light induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste derived bioorganic substances for light induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef
22.
Zurück zum Zitat Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef
23.
Zurück zum Zitat Montoneri, E., Boffa, V., Savarino, P., Perrone, D. G., Montoneri, C., Mendichi, R., et al. (2010). Behaviour and properties in aqueous solution of bio-polymers isolated from urban refuse. Biomacromolecules, 11, 3036–3042.CrossRef Montoneri, E., Boffa, V., Savarino, P., Perrone, D. G., Montoneri, C., Mendichi, R., et al. (2010). Behaviour and properties in aqueous solution of bio-polymers isolated from urban refuse. Biomacromolecules, 11, 3036–3042.CrossRef
24.
Zurück zum Zitat Boffa, V., Perrone, D. G., Montoneri, E., Magnacca, G., Bertinetti, L., Garlasco, L., & Mendichi, R. (2010). A waste derived biosurfactant for preparation of templated silica powders. ChemSusChem, 3, 445–452.CrossRef Boffa, V., Perrone, D. G., Montoneri, E., Magnacca, G., Bertinetti, L., Garlasco, L., & Mendichi, R. (2010). A waste derived biosurfactant for preparation of templated silica powders. ChemSusChem, 3, 445–452.CrossRef
25.
Zurück zum Zitat Carlos, L., Cipollone, M., Soria, D. B., Sergio Moreno, M., Ogilby, P. R., García Einschlag, F. S., & Mártire, D. O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 91, 23–29.CrossRef Carlos, L., Cipollone, M., Soria, D. B., Sergio Moreno, M., Ogilby, P. R., García Einschlag, F. S., & Mártire, D. O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 91, 23–29.CrossRef
26.
Zurück zum Zitat Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., et al. (2014). ACS Sustainable Chemistry & Engineering, 2, 1518–1524.CrossRef Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., et al. (2014). ACS Sustainable Chemistry & Engineering, 2, 1518–1524.CrossRef
27.
Zurück zum Zitat Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128–138.CrossRef Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128–138.CrossRef
28.
Zurück zum Zitat Testa, M. L., Tummino, M. L., Agostini, S., Avetta, P., Deganello, F., Montoneri, E., Magnacca, G., Bianco Prevot, A. Synthesis, characterization and environmental application of silicas modified with waste-derived photoactive substances. Submitted to Chemical Engineering Journal. Testa, M. L., Tummino, M. L., Agostini, S., Avetta, P., Deganello, F., Montoneri, E., Magnacca, G., Bianco Prevot, A. Synthesis, characterization and environmental application of silicas modified with waste-derived photoactive substances. Submitted to Chemical Engineering Journal.
29.
Zurück zum Zitat Magnacca, G., Laurenti, E., Vigna, E., Franzoso, F., Tomasso, L., Montoneri, E., & Boffa, V. (2012). Refuse derived bio-organics and immobilizer soybean peroxidase for green chemical technology. Process Biochemistry, 47, 2025–2031.CrossRef Magnacca, G., Laurenti, E., Vigna, E., Franzoso, F., Tomasso, L., Montoneri, E., & Boffa, V. (2012). Refuse derived bio-organics and immobilizer soybean peroxidase for green chemical technology. Process Biochemistry, 47, 2025–2031.CrossRef
30.
Zurück zum Zitat Knechtel, R. (2005). Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12, 63–68.CrossRef Knechtel, R. (2005). Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12, 63–68.CrossRef
31.
Zurück zum Zitat Lupasteanu, A. M., Laurenti, E., Magnacca, G., & Montoneri, E. (2012). New monolith configuration for the immobilization of lipase from Candida antarctica. Environment Engineering and Management Journal, 11, 2023–2028. Lupasteanu, A. M., Laurenti, E., Magnacca, G., & Montoneri, E. (2012). New monolith configuration for the immobilization of lipase from Candida antarctica. Environment Engineering and Management Journal, 11, 2023–2028.
32.
Zurück zum Zitat Deganello, F., Marcì, G., & Deganello, G. (2009). Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 29, 439–450.CrossRef Deganello, F., Marcì, G., & Deganello, G. (2009). Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 29, 439–450.CrossRef
33.
Zurück zum Zitat Deganello, F., Tummino, M. L., Calabrese, C., Testa, M. L., Avetta, P., Fabbri, D., Bianco Prevot, A., Montoneri, E., Magnacca, G. (2014). New eco-friendly LaFeO3 material prepared from urban wastes New Journal of Chemistry, 2014. doi:10.1039/C4NJ01279H. Deganello, F., Tummino, M. L., Calabrese, C., Testa, M. L., Avetta, P., Fabbri, D., Bianco Prevot, A., Montoneri, E., Magnacca, G. (2014). New eco-friendly LaFeO3 material prepared from urban wastes New Journal of Chemistry, 2014. doi:10.​1039/​C4NJ01279H.
34.
Zurück zum Zitat Magnacca, G., Spezzati, G., Deganello, F., & Testa, M. L. (2013). A new in situ methodology for the quantification of the oxygen storage potential in perovskite-type materials. RSC Advances, 3, 26352–26360.CrossRef Magnacca, G., Spezzati, G., Deganello, F., & Testa, M. L. (2013). A new in situ methodology for the quantification of the oxygen storage potential in perovskite-type materials. RSC Advances, 3, 26352–26360.CrossRef
35.
Zurück zum Zitat Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrasonics Sonochemistry, 19, 1087–1093.CrossRef Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrasonics Sonochemistry, 19, 1087–1093.CrossRef
36.
Zurück zum Zitat Boffa, V., Perrone, D. G., Magnacca, G., & Montoneri, E. (2014). Role of a waste-derived biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide. Ceramic International, 40, 12161–12169.CrossRef Boffa, V., Perrone, D. G., Magnacca, G., & Montoneri, E. (2014). Role of a waste-derived biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide. Ceramic International, 40, 12161–12169.CrossRef
37.
Zurück zum Zitat He, W., Cui, J., Yue, Y., Zhang, X., Xia, X., Liu, H., & Lui, S. (2011). High-performance TiO2 from Baker’s yeast. Journal of Colloid and Interface Science, 354, 109–115.CrossRef He, W., Cui, J., Yue, Y., Zhang, X., Xia, X., Liu, H., & Lui, S. (2011). High-performance TiO2 from Baker’s yeast. Journal of Colloid and Interface Science, 354, 109–115.CrossRef
Metadaten
Titel
Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis
verfasst von
G. Magnacca
E. Laurenti
M. C. Gonzalez
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-14744-4_4