Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Metallurgist 5-6/2022

28.09.2022

Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines

verfasst von: S. Yu. Nastich, V. A. Lopatkin

Erschienen in: Metallurgist | Ausgabe 5-6/2022

Einloggen, um Zugang zu erhalten

Abstract

In this article, literature data on the effect of hydrogen gas and methane-hydrogen mixtures at high pressure on the metal of gas pipelines are reviewed. The properties of low-alloy ferritic steels are known to be affected due to hydrogen embrittlement: ductility and fracture toughness decrease along with the increasing rate of fatigue crack propagation (da/dN); metal deformation curve transforms with failure mode changing to quasi-spalling. The conventional mechanical tests for evaluating hydrogen embrittlement are considered. The chemical composition and microstructure of pipe steels having strength grades from X52 (K50) to X100 (K80), characteristic of investigated materials, are shown. On the basis of published data, the effect of the hydrogen content in the methane-hydrogen mixture (from 0 to 100%), the pressure of the gas medium (up to 30 MPa), and durability on the plasticity (RRA, %; δ, displacement) and fracture toughness (KIH) of metal was assessed. General influence patterns associated with the structural type and characteristics of pipe metal on its properties when subjected to hydrogen are presented.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Fußnoten
1
ASME B31.12-2019 – Hydrogen piping and pipelines. ASME Code for Pressure Piping, B31 An American National Standard (Copyright ASME International) / ASME, 2019. 272 p.
 
Literatur
1.
Zurück zum Zitat B. A. Kolachev, Hydrogen Embrittlement of Metals [In Russian], Moscow, Metallurgiya, (1985). B. A. Kolachev, Hydrogen Embrittlement of Metals [In Russian], Moscow, Metallurgiya, (1985).
2.
Zurück zum Zitat P. V. Gel’d and R. A. Ryabov, Hydrogen in Metals and Alloys [In Russian], Moscow, Metallurgiya, (1974). P. V. Gel’d and R. A. Ryabov, Hydrogen in Metals and Alloys [In Russian], Moscow, Metallurgiya, (1974).
3.
Zurück zum Zitat Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” De Gruyter. Corrosion Rev., No. 31 (3–6), 85–103 (2013). Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” De Gruyter. Corrosion Rev., No. 31 (3–6), 85–103 (2013).
4.
Zurück zum Zitat X. Li, X. Ma, J. Zhang, et al., “Review of hydrogen embrittlement in metals: hydrogen difusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention,” Acta Metall. Sin. Engl., No. 33. 759–773 (2020). X. Li, X. Ma, J. Zhang, et al., “Review of hydrogen embrittlement in metals: hydrogen difusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention,” Acta Metall. Sin. Engl., No. 33. 759–773 (2020).
5.
Zurück zum Zitat O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., “Potential of methane-hydrogen fuel in the transition to a low-carbon economy,” Gas. Prom., No. 1/750, Special Issue, 82–85 (2017). O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., “Potential of methane-hydrogen fuel in the transition to a low-carbon economy,” Gas. Prom., No. 1/750, Special Issue, 82–85 (2017).
6.
Zurück zum Zitat H. Brauer, M. Simm, E. Wanzenberg, M. Henel, and O. J. Huising, “Energy transition with hydrogen pipes: Mannesmann “H2ready” and the changeover of existing gasunie natural gas networks,” PTJ, No Special 01, 16–29 (2020). H. Brauer, M. Simm, E. Wanzenberg, M. Henel, and O. J. Huising, “Energy transition with hydrogen pipes: Mannesmann “H2ready” and the changeover of existing gasunie natural gas networks,” PTJ, No Special 01, 16–29 (2020).
7.
Zurück zum Zitat N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka, “Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments,” Corros. Sci., 59, 1–9 (2012). CrossRef N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka, “Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments,” Corros. Sci., 59, 1–9 (2012). CrossRef
8.
Zurück zum Zitat E. Wanzenberg, M. Henel, H. Brauer, E. Tamaske, H. Neumann, A. Großmann, and K. Wackermann, “Research Project “H2-PIMS”: Transporting Hydrogen Safely in the Natural Gas Network,” Pipelinetechnik [in German], No. 06, 84 – 93 (2019). E. Wanzenberg, M. Henel, H. Brauer, E. Tamaske, H. Neumann, A. Großmann, and K. Wackermann, “Research Project “H2-PIMS”: Transporting Hydrogen Safely in the Natural Gas Network,” Pipelinetechnik [in German], No. 06, 84 – 93 (2019).
9.
Zurück zum Zitat C. Engel, U. Marewski, G. Schnotz, H. Silcher, M. Steiner, and S. Zickler, “Testing mechanical fracture of materials for gas pipelines to evaluate hydrogen compatibility: preliminary results,” Pipelinetechnik [in German], No. 10–11, 34–41 (2020). C. Engel, U. Marewski, G. Schnotz, H. Silcher, M. Steiner, and S. Zickler, “Testing mechanical fracture of materials for gas pipelines to evaluate hydrogen compatibility: preliminary results,” Pipelinetechnik [in German], No. 10–11, 34–41 (2020).
10.
Zurück zum Zitat D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang, and X. Wang, “The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel,” Int. J. Hydrog., 46 (10), 7402–7414 (2021). CrossRef D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang, and X. Wang, “The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel,” Int. J. Hydrog., 46 (10), 7402–7414 (2021). CrossRef
11.
Zurück zum Zitat H. P. Kyriakopoulou, P. Karmiris-Obratański, A. S. Tazedakis, N. M. Daniolos., E. C. Dourdounis, D. E. Manolakos, and D. Pantelis, “Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel,” Micromachines, No 11 (4), 430 (2020). H. P. Kyriakopoulou, P. Karmiris-Obratański, A. S. Tazedakis, N. M. Daniolos., E. C. Dourdounis, D. E. Manolakos, and D. Pantelis, “Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel,” Micromachines, No 11 (4), 430 (2020).
12.
Zurück zum Zitat A. S. Tazedakis, N. Voudouris, E. Dourdounis, G. Mannucci, L. F. Di Vito, and A. Fonzo, “Qualification of high-strength linepipes for hydrogen transportation based on ASME B31.12 Code,” PTJ, No. 1. 43–50 (2021). A. S. Tazedakis, N. Voudouris, E. Dourdounis, G. Mannucci, L. F. Di Vito, and A. Fonzo, “Qualification of high-strength linepipes for hydrogen transportation based on ASME B31.12 Code,” PTJ, No. 1. 43–50 (2021).
13.
Zurück zum Zitat D. Stalheim, T. Boggess, C. SanMarchi, S. Jansto, B. Somerday, G. Muralidharan, and P. Sofronis, “Microstructure and mechanical property performance of commercial grade api pipeline steels in high pressure gaseous hydrogen,” in: Proc. of IPC 2010 8th Intern. Pipeline Conf. Calgary, Canada (2010), Paper IPC2010-31301. D. Stalheim, T. Boggess, C. SanMarchi, S. Jansto, B. Somerday, G. Muralidharan, and P. Sofronis, “Microstructure and mechanical property performance of commercial grade api pipeline steels in high pressure gaseous hydrogen,” in: Proc. of IPC 2010 8th Intern. Pipeline Conf. Calgary, Canada (2010), Paper IPC2010-31301.
14.
Zurück zum Zitat H. Brauer, M. Simm, E. Wanzenberg, and M. Henel, “Transportation of gaseous hydrogen via pipelines,” bbr. [In German], No. 11, 36–41 (2018). H. Brauer, M. Simm, E. Wanzenberg, and M. Henel, “Transportation of gaseous hydrogen via pipelines,” bbr. [In German], No. 11, 36–41 (2018).
15.
Zurück zum Zitat B. Meng, C. Gu, L. Zhang, et. al., “Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures,” Int. J. Hydrog., No. 42, 7404–7412 (2017). B. Meng, C. Gu, L. Zhang, et. al., “Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures,” Int. J. Hydrog., No. 42, 7404–7412 (2017).
16.
Zurück zum Zitat J. A. Ronevich, E. Ju. Song, B. P. Somerday, and C. W. San Marchi, “Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen,” Int. J. Hydrog., 46 (10), 7601–7614 (2021). CrossRef J. A. Ronevich, E. Ju. Song, B. P. Somerday, and C. W. San Marchi, “Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen,” Int. J. Hydrog., 46 (10), 7601–7614 (2021). CrossRef
17.
Zurück zum Zitat I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, “Hydrogen embrittlement susceptibility of a high strength steel X80,” Mater. Sci. Eng. A, No. 527, 7252–7260 (2010). I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, “Hydrogen embrittlement susceptibility of a high strength steel X80,” Mater. Sci. Eng. A, No. 527, 7252–7260 (2010).
18.
Zurück zum Zitat A. J. Slifka, E. S. Drexler, R. L. Amaro, L. E. Hayden, D. G. Stalh eim, D. S. Lauria, and N. W. Hrabe, “Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen,” J. Press. Vessel Technol. Trans. ASME, No. 140 (1), 011407-1–011407-12 (2018). A. J. Slifka, E. S. Drexler, R. L. Amaro, L. E. Hayden, D. G. Stalh eim, D. S. Lauria, and N. W. Hrabe, “Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen,” J. Press. Vessel Technol. Trans. ASME, No. 140 (1), 011407-1–011407-12 (2018).
19.
Zurück zum Zitat R. L. Amaro, R. M. White, C. P. Looney, E. S. Drexler, and A. J. Slitka, “Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel,” J. Press. Vessel Technol. Trans. ASME, No 140 (2), 021403-1–021403-13 (2018). R. L. Amaro, R. M. White, C. P. Looney, E. S. Drexler, and A. J. Slitka, “Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel,” J. Press. Vessel Technol. Trans. ASME, No 140 (2), 021403-1–021403-13 (2018).
20.
Zurück zum Zitat A. J. Haq, K. Muzaka, D. P. Dunne, A. Calka, and E. V. Pereloma, “Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels,” Int. J. Hydrog., No. 38 (5), 2544–2556 (2013). A. J. Haq, K. Muzaka, D. P. Dunne, A. Calka, and E. V. Pereloma, “Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels,” Int. J. Hydrog., No. 38 (5), 2544–2556 (2013).
21.
Zurück zum Zitat E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, “Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines,” Int. J. Hydrog., 39 (25), 13300–13313 (2014). CrossRef E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, “Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines,” Int. J. Hydrog., 39 (25), 13300–13313 (2014). CrossRef
22.
Zurück zum Zitat J. G. Arenas-Salcedo, J. G. Godínez-Salcedo, J. L. González-Velázquez, and J. M. Medina-Huerta, “Effect of carbon content and microstructure on the diffusion of hydrogen in low carbon steels,” Int. J. Electrochem. Sci., No. 15, 11606– 11622 (2020). J. G. Arenas-Salcedo, J. G. Godínez-Salcedo, J. L. González-Velázquez, and J. M. Medina-Huerta, “Effect of carbon content and microstructure on the diffusion of hydrogen in low carbon steels,” Int. J. Electrochem. Sci., No. 15, 11606– 11622 (2020).
Metadaten
Titel
Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines
verfasst von
S. Yu. Nastich
V. A. Lopatkin
Publikationsdatum
28.09.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01369-0

Weitere Artikel der Ausgabe 5-6/2022

Metallurgist 5-6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.