Skip to main content
Erschienen in: Metallurgist 5-6/2020

26.09.2020

Effect of Impact Toughness Anisotropy on Brittle Fracture Resistance Characteristics of High-Strength Steels Subjected to Thermomechanical Treatment

verfasst von: V. M. Goritskii, G. R. Shneiderov, O. V. Goritskii

Erschienen in: Metallurgist | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure and mechanical properties under tension and impact bending of eleven batches of high-strength manganese-containing steels (Mn-steels) containing 0.09 to 0.14 wt.% Ti subjected to thermomechanical rolling were studied in the temperature range from –60 to +20 °С. It was found that the values of the coefficient of impact toughness anisotropy in the range of Ka = 2.0–4.9 increase at higher titanium content and decrease at higher aluminum content. The difference between ductile-to-brittle transition temperatures T50 and T34 for longitudinal and transverse KCV samples increases at higher contents of titanium, aluminum, sulfur, and carbon. This effect is caused by an earlier nucleation and growth of large dimples of ductile fracture around sizable inclusions preferentially located in the direction of rolling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ye. A. Goli-Oglu, L. I. Efron, and Yu. D. Morozov, “Improving the efficiency of thermomechanical treatment of micro-alloyed pipe steels,” Stal’, No. 2, 52–57 (2013). Ye. A. Goli-Oglu, L. I. Efron, and Yu. D. Morozov, “Improving the efficiency of thermomechanical treatment of micro-alloyed pipe steels,” Stal’, No. 2, 52–57 (2013).
2.
Zurück zum Zitat T. Tanaka, “Science and technology of hot rolling process of steel,” Microalloying’95 Conference Proceedings (1995), pp. 165–182. T. Tanaka, “Science and technology of hot rolling process of steel,” Microalloying’95 Conference Proceedings (1995), pp. 165–182.
3.
Zurück zum Zitat C. Quchi, T. Sampei, and I. Kozasu, “The effect of hot rolling condition and chemical composition on the Quest temperature of γ → α transformation after hot rolling,” Transactions ISIY, 22, 214–222 (1982).CrossRef C. Quchi, T. Sampei, and I. Kozasu, “The effect of hot rolling condition and chemical composition on the Quest temperature of γ → α transformation after hot rolling,” Transactions ISIY, 22, 214–222 (1982).CrossRef
4.
Zurück zum Zitat Yu. D. Morozov, I. F. Pemov, Ye. A. Goli-Oglu, and D. V. Nizhelskii, “Effect of the semi-finished rolled stock cooling rate during controlled rolling on the condition of hot-deformed austenite, final microstructure, and mechanical properties of micro-alloyed steel. Part 1,” Metallurg, No. 2, 70–77 (2012). Yu. D. Morozov, I. F. Pemov, Ye. A. Goli-Oglu, and D. V. Nizhelskii, “Effect of the semi-finished rolled stock cooling rate during controlled rolling on the condition of hot-deformed austenite, final microstructure, and mechanical properties of micro-alloyed steel. Part 1,” Metallurg, No. 2, 70–77 (2012).
5.
Zurück zum Zitat L. I. Efron, Yu. D. Morozov, and Ye. A. Goli-Oglu, “Effect of temperature conditions of controlled rolling on the structural state of hot-deformed austenite and properties of low-carbon micro-alloyed steel,” Stal’, No. 5, 60–65 (2012). L. I. Efron, Yu. D. Morozov, and Ye. A. Goli-Oglu, “Effect of temperature conditions of controlled rolling on the structural state of hot-deformed austenite and properties of low-carbon micro-alloyed steel,” Stal’, No. 5, 60–65 (2012).
6.
Zurück zum Zitat L. I. Efron, Yu. D. Morozov, and Ye. A. Goli-Oglu, “Effect of controlled rolling conditions on the structure refinement and combination of mechanical properties of low-carbon micro-alloyed steels,” Stal’, No. 5, 67–72 (2011). L. I. Efron, Yu. D. Morozov, and Ye. A. Goli-Oglu, “Effect of controlled rolling conditions on the structure refinement and combination of mechanical properties of low-carbon micro-alloyed steels,” Stal’, No. 5, 67–72 (2011).
7.
Zurück zum Zitat V. M. Goritskii, M. A. Lushkin, and O. V. Goritskii, “Anisotropy of impact toughness of structural steels with ferrite-pearlite structure tested according to the Charpy method,” Deformatsiya i Razrusheniye Materialov, No. 3, 43–48 (2013). V. M. Goritskii, M. A. Lushkin, and O. V. Goritskii, “Anisotropy of impact toughness of structural steels with ferrite-pearlite structure tested according to the Charpy method,” Deformatsiya i Razrusheniye Materialov, No. 3, 43–48 (2013).
8.
Zurück zum Zitat V. M. Goritskii, M. A. Lushkin, O. V. Goritskii, and G. R. Shneiderov, “Effect of the structural factors on anisotropy of impact toughness of rolled ferrite-pearlite steel products,” Deformatsiya i Razrusheniye Materialov, No. 8, 16–21 (2014). V. M. Goritskii, M. A. Lushkin, O. V. Goritskii, and G. R. Shneiderov, “Effect of the structural factors on anisotropy of impact toughness of rolled ferrite-pearlite steel products,” Deformatsiya i Razrusheniye Materialov, No. 8, 16–21 (2014).
9.
Zurück zum Zitat A. G. Glebov, M. A. Stremel’, and K. L. Kosyrev, “Areas of impurity influence on impact toughness of thick-gauge steel plate,” Stal’, No. 5, 95–97 (2004). A. G. Glebov, M. A. Stremel’, and K. L. Kosyrev, “Areas of impurity influence on impact toughness of thick-gauge steel plate,” Stal’, No. 5, 95–97 (2004).
10.
Zurück zum Zitat V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of low-alloyed weldable steels after thermomechanical rolling,” Metallurg, No. 5, 49–55 (2016). V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of low-alloyed weldable steels after thermomechanical rolling,” Metallurg, No. 5, 49–55 (2016).
11.
Zurück zum Zitat V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Study of impact toughness anisotropy and delamination tendency of Strenx 650 MC and 700 MC steels after thermomechanical rolling,” Metallurg, No. 8, 29–38 (2018). V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Study of impact toughness anisotropy and delamination tendency of Strenx 650 MC and 700 MC steels after thermomechanical rolling,” Metallurg, No. 8, 29–38 (2018).
12.
Zurück zum Zitat EN 10025-4:2004, “Hot Rolled Products of Structural Steels,” Part 4. Technical Delivery Conditions for Thermomechanical Rolled Weldable Fine Grain Structural Steels. EN 10025-4:2004, “Hot Rolled Products of Structural Steels,” Part 4. Technical Delivery Conditions for Thermomechanical Rolled Weldable Fine Grain Structural Steels.
13.
Zurück zum Zitat V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of high-strength weldable steels,” Metallurg, No. 1, 18–24 (2019). V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of chemical composition and structure on mechanical properties of high-strength weldable steels,” Metallurg, No. 1, 18–24 (2019).
14.
Zurück zum Zitat V. M. Goritskii, “Structure effect on viscoelastic transition in steels with a BCC lattice,” Metallurg, No. 2, 46–55 (2018). V. M. Goritskii, “Structure effect on viscoelastic transition in steels with a BCC lattice,” Metallurg, No. 2, 46–55 (2018).
15.
Zurück zum Zitat V. M. Goritskii, Application of Impact Toughness Characteristics in Engineering Practice [in Russian], Metallurgizdat, Moscow (2016). V. M. Goritskii, Application of Impact Toughness Characteristics in Engineering Practice [in Russian], Metallurgizdat, Moscow (2016).
Metadaten
Titel
Effect of Impact Toughness Anisotropy on Brittle Fracture Resistance Characteristics of High-Strength Steels Subjected to Thermomechanical Treatment
verfasst von
V. M. Goritskii
G. R. Shneiderov
O. V. Goritskii
Publikationsdatum
26.09.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01012-w

Weitere Artikel der Ausgabe 5-6/2020

Metallurgist 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.