Skip to main content
Erschienen in:

01.08.2023

Effect of inclined magnetic field on natural convection and entropy generation of non-Newtonian ferrofluid in a square cavity having a heated wavy cylinder

verfasst von: Shampa Sarker Tuli, Litan Kumar Saha, Nepal Chandra Roy

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetohydrodynamic (MHD) natural convection of non-Newtonian ferrofluid and entropy generation in a square enclosure containing a wavy cylinder was investigated. The inner wavy cylinder was assumed to be heated and the outer square enclosure to be cold. The ferrofluid's rheology was presented by the power-law model, while density fluctuations owing to thermal expansion were described using the Boussinesq approximation. Numerical calculations had been performed using dimensionless parameters such as Hartmann number, power-law index, Rayleigh number, wave number, and volume fraction. Results are discussed in terms of isotherms, velocity field, average Nusselt number, and entropy generation, taking into account the variations in physically significant parameters. Results indicate that thermal convection dominates the isotherms of shear-thinning fluids, while conduction is more prominent in shear-thickening fluids. The power-law index (n) greatly influences the streamlines and isotherms. The non-Newtonian ferrofluid's average Nusselt number (\(\overline{\mathrm{Nu}}\)) rises as the Hartmann number is reduced and the Rayleigh number (Ra) is increased. In this simulation, the maximum value of \(\overline{\mathrm{Nu}}\) is found to be 8.38 because of the addition of ferroparticles. Additionally, the irreversibility caused by fluid friction, heat transfer, and magnetic field for the shear-thinning (n < 1), Newtonian (n = 1), and shear-thickening (n > 1) cases can be minimized by using the ideal parametric combination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Waqas M (2020) A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J Magn Magn Mater 493:165646CrossRef Waqas M (2020) A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J Magn Magn Mater 493:165646CrossRef
2.
Zurück zum Zitat Sheikholeslami M, Shehzad SA (2018) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192CrossRef Sheikholeslami M, Shehzad SA (2018) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192CrossRef
3.
Zurück zum Zitat Muhammad N, Nadeem S (2017) Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. Eur Phys J Plus 132:377CrossRef Muhammad N, Nadeem S (2017) Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. Eur Phys J Plus 132:377CrossRef
4.
Zurück zum Zitat Daneshvar-Garmroodi MR, Ahmadpour A, Hajmohammadi MR, Gholamrezaie S (2020) Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J Therm Anal Calorim 141:2127–2143CrossRef Daneshvar-Garmroodi MR, Ahmadpour A, Hajmohammadi MR, Gholamrezaie S (2020) Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J Therm Anal Calorim 141:2127–2143CrossRef
5.
Zurück zum Zitat Shuchi S, Sakatani K, Yamaguchi H (2005) An application of a binary mixture of magnetic fluid for heat transport devices. J Magn Magn Mater 289:257–259CrossRef Shuchi S, Sakatani K, Yamaguchi H (2005) An application of a binary mixture of magnetic fluid for heat transport devices. J Magn Magn Mater 289:257–259CrossRef
6.
Zurück zum Zitat Scherer C, Figueiredo-Neto AM (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727CrossRef Scherer C, Figueiredo-Neto AM (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727CrossRef
7.
Zurück zum Zitat Jalili B, Sadighi S, Jalili P, Ganji DD (2019) Characteristics of ferrofluid flow over a stretching sheet with suction and injection. Case Stud Therm Eng 14:100470CrossRef Jalili B, Sadighi S, Jalili P, Ganji DD (2019) Characteristics of ferrofluid flow over a stretching sheet with suction and injection. Case Stud Therm Eng 14:100470CrossRef
8.
Zurück zum Zitat Rabbi KM, Shuvo M, Kabi RH, Mojumder S, Saha S (2016) Numerical analysis of mixed convection in lid-driven cavity using non-Newtonian ferrofluid with rotating cylinder inside. In: AIP Conference Proceedings, vol 1754 p 040016 Rabbi KM, Shuvo M, Kabi RH, Mojumder S, Saha S (2016) Numerical analysis of mixed convection in lid-driven cavity using non-Newtonian ferrofluid with rotating cylinder inside. In: AIP Conference Proceedings, vol 1754 p 040016
9.
Zurück zum Zitat Nabavizadeh SA, Talebi S, Sefid M, Nourmohammadzadeh M (2012) Natural convection in a square cavity containing a sinusoidal cylinder. Int J Therm Sci 51:112–120CrossRef Nabavizadeh SA, Talebi S, Sefid M, Nourmohammadzadeh M (2012) Natural convection in a square cavity containing a sinusoidal cylinder. Int J Therm Sci 51:112–120CrossRef
10.
Zurück zum Zitat Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRef Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRef
11.
Zurück zum Zitat Parvin S, Roy NC, Saha LK & Siddiqa S (2022) Heat transfer characteristics of nanofluids from a sinusoidal corrugated cylinder placed in a square cavity. Proc Inst Mech Eng Part C 236, 2617–2630CrossRef Parvin S, Roy NC, Saha LK & Siddiqa S (2022) Heat transfer characteristics of nanofluids from a sinusoidal corrugated cylinder placed in a square cavity. Proc Inst Mech Eng Part C 236, 2617–2630CrossRef
12.
Zurück zum Zitat Sheikholeslami M, Ellahi R, Hassan M & Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24, 1906–1927CrossRef Sheikholeslami M, Ellahi R, Hassan M & Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24, 1906–1927CrossRef
13.
Zurück zum Zitat Saleem BR, Saleem MA & Sharma A (2000) Hepatic hydrothorax in a patient with no demonstrable ascites: a case report. Am J Gastroenterol 95, 2603–2604CrossRef Saleem BR, Saleem MA & Sharma A (2000) Hepatic hydrothorax in a patient with no demonstrable ascites: a case report. Am J Gastroenterol 95, 2603–2604CrossRef
14.
Zurück zum Zitat Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD (2020) Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim 139:661–671CrossRef Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD (2020) Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim 139:661–671CrossRef
15.
Zurück zum Zitat Abdulkadhim A, Hamzah HK, Ali FH, Abed AM, Abed IM (2019) Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int Commun Heat Mass Transf 109:104350CrossRef Abdulkadhim A, Hamzah HK, Ali FH, Abed AM, Abed IM (2019) Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int Commun Heat Mass Transf 109:104350CrossRef
16.
Zurück zum Zitat Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084MATHCrossRef Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084MATHCrossRef
17.
Zurück zum Zitat Kakarantzas SC, Sarris IE, Grecos AP, Vlachos NS (2009) Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature. Int J Heat Mass Transf 52:250–259MATHCrossRef Kakarantzas SC, Sarris IE, Grecos AP, Vlachos NS (2009) Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature. Int J Heat Mass Transf 52:250–259MATHCrossRef
18.
Zurück zum Zitat Oztop HF, Oztop M, Varol Y (2009) Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Nonlinear Sci Numer Simul 14:770–778MATHCrossRef Oztop HF, Oztop M, Varol Y (2009) Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Nonlinear Sci Numer Simul 14:770–778MATHCrossRef
19.
Zurück zum Zitat Son JH, Park IS (2017) Numerical study of MHD natural convection in a rectangular enclosure with an insulated block. Numer Heat Transf Part A Appl 71:1004–1022CrossRef Son JH, Park IS (2017) Numerical study of MHD natural convection in a rectangular enclosure with an insulated block. Numer Heat Transf Part A Appl 71:1004–1022CrossRef
20.
Zurück zum Zitat Javed T, Siddiqui MA (2018) Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int J Therm Sci 125:419–427CrossRef Javed T, Siddiqui MA (2018) Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int J Therm Sci 125:419–427CrossRef
21.
Zurück zum Zitat Reilly IG, Tien C, Adelman M (1965) Experimental study of natural convective heat transfer from a vertical plate in a non-newtonian fluid. Can J Chem Eng 43:157–160CrossRef Reilly IG, Tien C, Adelman M (1965) Experimental study of natural convective heat transfer from a vertical plate in a non-newtonian fluid. Can J Chem Eng 43:157–160CrossRef
22.
Zurück zum Zitat Ozoe H, Churchill SW (1972) Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids: The development of a numerical solution. AIChE J 18:1196–1207CrossRef Ozoe H, Churchill SW (1972) Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids: The development of a numerical solution. AIChE J 18:1196–1207CrossRef
23.
Zurück zum Zitat Lamsaadi M, Naimi M, Hasnaoui M, Mamou M (2006) Natural convection in a vertical rectangular cavity filled with a non-newtonian power law fluid and subjected to a horizontal temperature gradient. Numer Heat Transf Part A Appl 49:969–990CrossRef Lamsaadi M, Naimi M, Hasnaoui M, Mamou M (2006) Natural convection in a vertical rectangular cavity filled with a non-newtonian power law fluid and subjected to a horizontal temperature gradient. Numer Heat Transf Part A Appl 49:969–990CrossRef
24.
Zurück zum Zitat Sojoudi A, Saha SC, Gu YT, Hossain MA (2013) Steady Natural Convection of Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure. Adv Mech Eng 5:653108CrossRef Sojoudi A, Saha SC, Gu YT, Hossain MA (2013) Steady Natural Convection of Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure. Adv Mech Eng 5:653108CrossRef
25.
Zurück zum Zitat Kefayati GR (2016) Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf 92:1066–1089CrossRef Kefayati GR (2016) Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf 92:1066–1089CrossRef
26.
Zurück zum Zitat Turan O, Sachdeva A, Chakraborty N, Poole RJ (2011) Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Nonnewton Fluid Mech 166:1049–1063MATHCrossRef Turan O, Sachdeva A, Chakraborty N, Poole RJ (2011) Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Nonnewton Fluid Mech 166:1049–1063MATHCrossRef
27.
Zurück zum Zitat Ilis GG, Mobedi M, Sunden B (2008) Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf 35:696–703CrossRef Ilis GG, Mobedi M, Sunden B (2008) Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf 35:696–703CrossRef
28.
Zurück zum Zitat El-Maghlany, W. M., Saqr, K. M. & Teamah, M. A (2014) Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity. Energy Convers Manag 85:333–342CrossRef El-Maghlany, W. M., Saqr, K. M. & Teamah, M. A (2014) Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity. Energy Convers Manag 85:333–342CrossRef
29.
Zurück zum Zitat Shahi M, Mahmoudi AH, Raouf AH (2011) Entropy generation due to natural convection cooling of a nanofluid. Int Commun Heat Mass Transf 38:972–983CrossRef Shahi M, Mahmoudi AH, Raouf AH (2011) Entropy generation due to natural convection cooling of a nanofluid. Int Commun Heat Mass Transf 38:972–983CrossRef
30.
Zurück zum Zitat Esmaeilpour M, Abdollahzadeh M (2012) Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci 52:127–136CrossRef Esmaeilpour M, Abdollahzadeh M (2012) Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci 52:127–136CrossRef
31.
Zurück zum Zitat Cho CC, Chen CL, Chen CK (2013) Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid. Int J Heat Mass Transf 61:749–758CrossRef Cho CC, Chen CL, Chen CK (2013) Natural convection heat transfer and entropy generation in wavy-wall enclosure containing water-based nanofluid. Int J Heat Mass Transf 61:749–758CrossRef
32.
Zurück zum Zitat Cho CC (2014) Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. Int J Heat Mass Transf 77:818–827CrossRef Cho CC (2014) Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. Int J Heat Mass Transf 77:818–827CrossRef
33.
Zurück zum Zitat Mahmoudi AH, Pop I, Shahi M, Talebi F (2013) MHD natural convection and entropy generation in a trapezoidal enclosure using Cu-water nanofluid. Comput Fluids 72:46–62MathSciNetMATHCrossRef Mahmoudi AH, Pop I, Shahi M, Talebi F (2013) MHD natural convection and entropy generation in a trapezoidal enclosure using Cu-water nanofluid. Comput Fluids 72:46–62MathSciNetMATHCrossRef
34.
Zurück zum Zitat Mejri I, Mahmoudi A, Abbassi MA, Omri A (2014) Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technol 266:340–353CrossRef Mejri I, Mahmoudi A, Abbassi MA, Omri A (2014) Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technol 266:340–353CrossRef
35.
Zurück zum Zitat Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64CrossRef Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64CrossRef
36.
Zurück zum Zitat Ghanbarpour M, Haghigi EB & Khodabandeh R (2014) Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci 53, 227–235CrossRef Ghanbarpour M, Haghigi EB & Khodabandeh R (2014) Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci 53, 227–235CrossRef
37.
Zurück zum Zitat Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRef Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRef
38.
Zurück zum Zitat Magherbi M, Abbassi H & Ben BA (2003) Entropy generation at the onset of natural convection. Int J Heat Mass Transf 46, 3441–3450MATHCrossRef Magherbi M, Abbassi H & Ben BA (2003) Entropy generation at the onset of natural convection. Int J Heat Mass Transf 46, 3441–3450MATHCrossRef
39.
Zurück zum Zitat Demirel Y (1998) Pii s0735–1933(98)00054–2. 25, 671–679 Demirel Y (1998) Pii s0735–1933(98)00054–2. 25, 671–679
40.
Zurück zum Zitat Sivaraj C, Sheremet MA (2018) MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci 149:326–337CrossRef Sivaraj C, Sheremet MA (2018) MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci 149:326–337CrossRef
41.
Zurück zum Zitat Himika TA, Hassan S, Hasan MF, Molla MM (2020) Lattice Boltzmann Simulation of MHD Rayleigh-Bénard Convection in Porous Media. Arab J Sci Eng 45:9527–9547CrossRef Himika TA, Hassan S, Hasan MF, Molla MM (2020) Lattice Boltzmann Simulation of MHD Rayleigh-Bénard Convection in Porous Media. Arab J Sci Eng 45:9527–9547CrossRef
42.
Zurück zum Zitat Mehmood K, Hussain S, Sagheer M (2017) Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: Introduction. Int J Heat Mass Transf 109:397–409CrossRef Mehmood K, Hussain S, Sagheer M (2017) Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: Introduction. Int J Heat Mass Transf 109:397–409CrossRef
43.
Zurück zum Zitat Kefayati GHR, Tang H (2018) MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int J Heat Mass Transf 126:508–530CrossRef Kefayati GHR, Tang H (2018) MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int J Heat Mass Transf 126:508–530CrossRef
44.
Zurück zum Zitat Kim BS, Lee DS, Ha MY, Yoon HS (2008) A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int J Heat Mass Transf 51:1888–1906MATHCrossRef Kim BS, Lee DS, Ha MY, Yoon HS (2008) A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int J Heat Mass Transf 51:1888–1906MATHCrossRef
45.
Zurück zum Zitat Lee JM, Ha MY, Yoon HS (2010) Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int J Heat Mass Transf 53:5905–5919MATHCrossRef Lee JM, Ha MY, Yoon HS (2010) Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int J Heat Mass Transf 53:5905–5919MATHCrossRef
46.
Zurück zum Zitat Dogonchi AS (2019) Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transf 130, 320–332.CrossRef Dogonchi AS (2019) Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transf 130, 320–332.CrossRef
47.
Zurück zum Zitat Siemssen RH (1998) Concluding remarks. J Phys G Nucl Part Phys 24:1651–1656CrossRef Siemssen RH (1998) Concluding remarks. J Phys G Nucl Part Phys 24:1651–1656CrossRef
48.
Zurück zum Zitat Sheikholeslami M, Rashidi MM, Ganji DD (2015) Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid. Comput Methods Appl Mech Eng 294:299–312MATHCrossRef Sheikholeslami M, Rashidi MM, Ganji DD (2015) Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid. Comput Methods Appl Mech Eng 294:299–312MATHCrossRef
49.
Zurück zum Zitat Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef
Metadaten
Titel
Effect of inclined magnetic field on natural convection and entropy generation of non-Newtonian ferrofluid in a square cavity having a heated wavy cylinder
verfasst von
Shampa Sarker Tuli
Litan Kumar Saha
Nepal Chandra Roy
Publikationsdatum
01.08.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2023
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10279-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.