Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2015

01.01.2015 | Original Paper

Effect of initial sol concentration on the microstructure and morphology of carbon aerogels

verfasst von: Alireza Hajizadeh, Ahmad Reza Bahramian, Azadeh Seifi, Iman Naseri

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

New carbon aerogels were prepared using Novolac sol as precursor. The elaboration process and the structural characterizations of these porous carbon materials are described in the present study. Series of monolithic carbon aerogels were prepared in 2-propanol by crosslinking Novolac with hexamethylene tetra amine catalyst via sol–gel polymerization in the solvent vapor-saturated atmosphere followed by pyrolysis. Low density materials (from 0.3 to 0.6 g/cm3) were obtained after pyrolysis. These newly carbon aerogels were characterized using mercury porosimetry, nitrogen adsorption and scanning electron microscopy. All prepared materials have shown a nanostructured solid network (specific surface areas between 554 and 635 m2/g) and all samples have pore volumes as large as 0.97 cm3/g. Influence of Novolac concentration in the initial sol on the carbon aerogel structure was investigated. A special attention was dedicated to the different microstructures and morphologies occurring after the elaboration process. In particular, changing solid network from colloidal to polymeric network was studied in terms of micro, meso and macro porosity. In parallel, mechanical properties were presented in terms of bulk modulus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, BerlinCrossRef Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, BerlinCrossRef
2.
Zurück zum Zitat Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef
3.
Zurück zum Zitat Feng J, Feng J, Zhang C (2012) Thermal conductivity of low density carbon aerogels. J Porous Mater 19(5):551–556CrossRef Feng J, Feng J, Zhang C (2012) Thermal conductivity of low density carbon aerogels. J Porous Mater 19(5):551–556CrossRef
4.
Zurück zum Zitat Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef
5.
Zurück zum Zitat Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef
6.
Zurück zum Zitat Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10(4):213–222CrossRef Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10(4):213–222CrossRef
7.
Zurück zum Zitat Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656–667CrossRef Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656–667CrossRef
8.
Zurück zum Zitat Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227CrossRef Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227CrossRef
9.
Zurück zum Zitat Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494CrossRef Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494CrossRef
10.
Zurück zum Zitat Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98CrossRef Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145:90–98CrossRef
11.
Zurück zum Zitat Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic–furfural reaction. J Non-Cryst Solids 188(1):34–40CrossRef Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic–furfural reaction. J Non-Cryst Solids 188(1):34–40CrossRef
12.
Zurück zum Zitat Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids 225:64–68CrossRef Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids 225:64–68CrossRef
13.
Zurück zum Zitat Li W, Guo S (2000) Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38(10):1520–1523CrossRef Li W, Guo S (2000) Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38(10):1520–1523CrossRef
14.
Zurück zum Zitat Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol–Gel Sci Technol 52(1):56–64CrossRef Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol–Gel Sci Technol 52(1):56–64CrossRef
15.
Zurück zum Zitat Liang C, Sha G, Guo S (2000) Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying. J Non-Cryst Solids 271(1):167–170 Liang C, Sha G, Guo S (2000) Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying. J Non-Cryst Solids 271(1):167–170
16.
Zurück zum Zitat Yan Z, Yujian L, Qi H, Zhewen H (2008) Effect of solvent on the chain conformation and cure behavior of phenolic resin. J Appl Polym Sci 108(5):3009–3015CrossRef Yan Z, Yujian L, Qi H, Zhewen H (2008) Effect of solvent on the chain conformation and cure behavior of phenolic resin. J Appl Polym Sci 108(5):3009–3015CrossRef
17.
Zurück zum Zitat Naseri I, Kazemi A, Bahramian AR, Razzaghi Kashani M (2014) Preparation of organic and carbon xerogels using high-temperature–pressure sol–gel polymerization. Mater Des 61:35–40CrossRef Naseri I, Kazemi A, Bahramian AR, Razzaghi Kashani M (2014) Preparation of organic and carbon xerogels using high-temperature–pressure sol–gel polymerization. Mater Des 61:35–40CrossRef
18.
Zurück zum Zitat Hajizadeh A, Bahramian AR, Sharif A (2014) Investigation of the effect of sol concentration on the microstructure and morphology of Novolac hyperporous. J Non-Cryst Solids 402:53–57 Hajizadeh A, Bahramian AR, Sharif A (2014) Investigation of the effect of sol concentration on the microstructure and morphology of Novolac hyperporous. J Non-Cryst Solids 402:53–57
19.
Zurück zum Zitat Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7(4):115CrossRef Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7(4):115CrossRef
20.
Zurück zum Zitat Alié C, Pirard R, Pirard J-P (2001) Mercury porosimetry: applicability of the buckling-intrusion mechanism to low-density xerogels. J Non-Cryst Solids 292(1):138–149CrossRef Alié C, Pirard R, Pirard J-P (2001) Mercury porosimetry: applicability of the buckling-intrusion mechanism to low-density xerogels. J Non-Cryst Solids 292(1):138–149CrossRef
21.
Zurück zum Zitat Pirard R, Blacher S, Brouers F, Pirard JP (1995) Interpretation of mercury porosimetry applied to aerogels. J Mater Res 10(08):2114–2119CrossRef Pirard R, Blacher S, Brouers F, Pirard JP (1995) Interpretation of mercury porosimetry applied to aerogels. J Mater Res 10(08):2114–2119CrossRef
22.
Zurück zum Zitat Pirard R, Rigacci A, Marechal JC, Quenard D, Chevalier B, Achard P, Pirard J-P (2003) Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer 44(17):4881–4887CrossRef Pirard R, Rigacci A, Marechal JC, Quenard D, Chevalier B, Achard P, Pirard J-P (2003) Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer 44(17):4881–4887CrossRef
23.
Zurück zum Zitat Job N, Pirard R, Pirard J-P, Alié C (2006) Non intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part Part Syst Charact 23(1):72–81CrossRef Job N, Pirard R, Pirard J-P, Alié C (2006) Non intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part Part Syst Charact 23(1):72–81CrossRef
24.
Zurück zum Zitat Meyer K, Klobes P (1999) Comparison between different presentations of pore size distribution in porous materials. Fresenius J Anal Chem 363(2):174–178CrossRef Meyer K, Klobes P (1999) Comparison between different presentations of pore size distribution in porous materials. Fresenius J Anal Chem 363(2):174–178CrossRef
25.
Zurück zum Zitat Roquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and solids: principles, methodology, and applications. Academic Press, London Roquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and solids: principles, methodology, and applications. Academic Press, London
26.
Zurück zum Zitat Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186:316–320CrossRef Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186:316–320CrossRef
27.
Zurück zum Zitat Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14(8):1913–1926CrossRef Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14(8):1913–1926CrossRef
28.
Zurück zum Zitat Ma H-S, Prévost J-H, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure–property relationship of aerogels. J Non-Cryst Solids 285(1):216–221CrossRef Ma H-S, Prévost J-H, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure–property relationship of aerogels. J Non-Cryst Solids 285(1):216–221CrossRef
29.
Zurück zum Zitat Thommes M, Cychosz KA (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20(2–3):233–250CrossRef Thommes M, Cychosz KA (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20(2–3):233–250CrossRef
30.
Zurück zum Zitat Pekala RW, Schaefer DW (1993) Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20):5487–5493CrossRef Pekala RW, Schaefer DW (1993) Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20):5487–5493CrossRef
31.
Zurück zum Zitat Gommes CJ, Roberts AP (2008) Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys Rev E 77(4):041409CrossRef Gommes CJ, Roberts AP (2008) Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys Rev E 77(4):041409CrossRef
32.
Zurück zum Zitat Wang Y, Min Z, Cao M, Xu D (2009) Effect of heating conditions on pore structure and performance of carbon foams. New Carbon Mater 24(4):321–326CrossRef Wang Y, Min Z, Cao M, Xu D (2009) Effect of heating conditions on pore structure and performance of carbon foams. New Carbon Mater 24(4):321–326CrossRef
33.
Zurück zum Zitat Klett JW, McMillan AD, Gallego NC, Walls CA (2004) The role of structure on the thermal properties of graphitic foams. J Mater Sci 39(11):3659–3676CrossRef Klett JW, McMillan AD, Gallego NC, Walls CA (2004) The role of structure on the thermal properties of graphitic foams. J Mater Sci 39(11):3659–3676CrossRef
Metadaten
Titel
Effect of initial sol concentration on the microstructure and morphology of carbon aerogels
verfasst von
Alireza Hajizadeh
Ahmad Reza Bahramian
Azadeh Seifi
Iman Naseri
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2015
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3520-4

Weitere Artikel der Ausgabe 1/2015

Journal of Sol-Gel Science and Technology 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.