Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

15.04.2019

Effect of insulation barrier on AC breakdown voltage of rod-plane gaps and analysis of surface residual charge property

verfasst von: Guochang Li, Jiaxing Wang, Yanhui Wei, Shengtao Li, Jingbing Wang, Haibin Zan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the limited space on the roof of the high-speed train, breakdown performance of the high voltage box can be greatly improved by introducing the insulation barrier between bus-bar and ground plane. In the paper, effect of barrier size, position and material property on ac air gaps breakdown voltage have been studied, and two typical barrier materials, polyester glass blanket (GPO-3) and epoxy resin (EP) have been compared. Further, surface potential property on the barrier after discharge has been measured by the non-contact surface potentiometer, and surface trap parameters of the two materials have been calculated. The experimental results indicate that the breakdown voltage of rod-plane gaps will be increased about 1.95 times and 1.83 times for GPO-3 and EP respectively. On the one hand, the discharge path can be lengthened by increasing the size of the barrier. On the other hand, the closer the barrier to the rod electrode, the evolution of corona region can be prevented as soon as possible before the self-holding discharge occurs. There exists obvious residual charges on the barrier surface after discharge, the initial surface potential of EP and GPO-3 after discharge are 8091 V and 3856 V respectively. Further, it has been calculated that the trap levels of the two barriers are both the deep trap, about 1.0 eV, resulting in that the residual charges remain on the barrier surface for a long time. In addition, the residual charge density of EP is more than that of GPO-3, the charge density peaks of EP are 3.33 × 1019/m3 and 2.75 × 1019/m3, which is the main reason that its breakdown voltage is lower than that of GPO-3.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.Q. Zhang, High voltage box mounted on roof structure: China CN 104882805 A[P] (2015) G.Q. Zhang, High voltage box mounted on roof structure: China CN 104882805 A[P] (2015)
2.
Zurück zum Zitat X. Bian, L. Wang, J. Macalpine et al., Positive corona inception voltages and corona currents for air at various pressures and humidity. IEEE Trans. Dielectr. Electr. Insul. 17(1), 63–70 (2010)CrossRef X. Bian, L. Wang, J. Macalpine et al., Positive corona inception voltages and corona currents for air at various pressures and humidity. IEEE Trans. Dielectr. Electr. Insul. 17(1), 63–70 (2010)CrossRef
3.
Zurück zum Zitat A.K. Srivastava, G. Prasad, Characteristics of parallel-plate and planar-surface dielectric barrier discharge at atmospheric pressure. J. Electrostat. 72, 140–146 (2014)CrossRef A.K. Srivastava, G. Prasad, Characteristics of parallel-plate and planar-surface dielectric barrier discharge at atmospheric pressure. J. Electrostat. 72, 140–146 (2014)CrossRef
4.
Zurück zum Zitat M. Rezinkina, O. Rezinkin, F. D’Alessandro et al., Influence of corona on strike probability of grounded electrodes by high voltage discharges. J. Electrostat. 83, 42–51 (2016)CrossRef M. Rezinkina, O. Rezinkin, F. D’Alessandro et al., Influence of corona on strike probability of grounded electrodes by high voltage discharges. J. Electrostat. 83, 42–51 (2016)CrossRef
5.
Zurück zum Zitat A. Berendt, M. Budnarowska, J. Mizeraczyk, DC negative corona discharge characteristics in air flowing transversely and longitudinally through a needle-plate electrode gap. J. Electrostat. 92, 24–30 (2018)CrossRef A. Berendt, M. Budnarowska, J. Mizeraczyk, DC negative corona discharge characteristics in air flowing transversely and longitudinally through a needle-plate electrode gap. J. Electrostat. 92, 24–30 (2018)CrossRef
6.
Zurück zum Zitat M. Rezinkina, O. Rezinkin, F. D’Alessandro et al., Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field. J. Electrostat. 87, 79–85 (2017)CrossRef M. Rezinkina, O. Rezinkin, F. D’Alessandro et al., Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field. J. Electrostat. 87, 79–85 (2017)CrossRef
7.
Zurück zum Zitat H. Kang, J.B. Na, Y.D. Chung et al., Experimental study on the barrier effects in gaseous helium for the insulation design of a high voltage SFCL. IEEE Trans. Appl. Supercond. 21(3), 1328–1331 (2011)CrossRef H. Kang, J.B. Na, Y.D. Chung et al., Experimental study on the barrier effects in gaseous helium for the insulation design of a high voltage SFCL. IEEE Trans. Appl. Supercond. 21(3), 1328–1331 (2011)CrossRef
8.
Zurück zum Zitat A. Kara, E. Onal, O. Kalenderli et al., The effect of insulating barriers on AC breakdown voltage in inhomogeneous field (IEEE MELECON, Benalmádena, 2006), pp. 1206–1208 A. Kara, E. Onal, O. Kalenderli et al., The effect of insulating barriers on AC breakdown voltage in inhomogeneous field (IEEE MELECON, Benalmádena, 2006), pp. 1206–1208
9.
Zurück zum Zitat S A. Sebo, J. Kahler, S. Hutchins et al., The effect of insulating sheets (barriers) in various gaps—the study of AC breakdown voltages and barrier factors, In: International Symposium on High Voltage Engineering. IET, pp. 144–147 (1999) S A. Sebo, J. Kahler, S. Hutchins et al., The effect of insulating sheets (barriers) in various gaps—the study of AC breakdown voltages and barrier factors, In: International Symposium on High Voltage Engineering. IET, pp. 144–147 (1999)
10.
Zurück zum Zitat Y.S. Zheng, Y. Chen, X.Y. Zhong et al., Effects of barrier dimensions on AC withstand characteristics of air insulated rod-plane gaps. High Volt. Eng. 44(01), 195–200 (2018) Y.S. Zheng, Y. Chen, X.Y. Zhong et al., Effects of barrier dimensions on AC withstand characteristics of air insulated rod-plane gaps. High Volt. Eng. 44(01), 195–200 (2018)
11.
Zurück zum Zitat A. Kara ,O. Kalenderli, K. Mardikyan, DC breakdown voltage characteristics of small air gaps with insulating barriers in non-uniform field. In: International conference on high voltage engineering and application, IEEE. pp. 425–428 (2010) A. Kara ,O. Kalenderli, K. Mardikyan, DC breakdown voltage characteristics of small air gaps with insulating barriers in non-uniform field. In: International conference on high voltage engineering and application, IEEE. pp. 425–428 (2010)
12.
Zurück zum Zitat F. Mauseth, S. Jorstad, A. Pedersen, Streamer inception and propagation for air insulated rod-plane gaps with barriers, IEEE Electrical Insulation and Dielectric Phenomena, pp. 739–732 (2012) F. Mauseth, S. Jorstad, A. Pedersen, Streamer inception and propagation for air insulated rod-plane gaps with barriers, IEEE Electrical Insulation and Dielectric Phenomena, pp. 739–732 (2012)
13.
Zurück zum Zitat R. Wilkins, M. Lang, M. Allison, Effect of insulating barriers in arc flash testing. In: IEEE Industry Conference on Petroleum and Chemical, pp. 1354–1359 (2007) R. Wilkins, M. Lang, M. Allison, Effect of insulating barriers in arc flash testing. In: IEEE Industry Conference on Petroleum and Chemical, pp. 1354–1359 (2007)
14.
Zurück zum Zitat W. Shi, Y.C. Qiu, Q.G. Zhang, High Voltage Engineering Foundation (China Machine Press, Beijing, 2006), pp. 23–24 W. Shi, Y.C. Qiu, Q.G. Zhang, High Voltage Engineering Foundation (China Machine Press, Beijing, 2006), pp. 23–24
15.
Zurück zum Zitat G.C. Li, S.T. Li, S.M. Pan et al., Dynamic charge transport characteristics in polyimide surface and surface layer under low-energy electron radiation. IEEE Trans. Dielectr. Electr. Insul. 23(4), 2393–2403 (2016)CrossRef G.C. Li, S.T. Li, S.M. Pan et al., Dynamic charge transport characteristics in polyimide surface and surface layer under low-energy electron radiation. IEEE Trans. Dielectr. Electr. Insul. 23(4), 2393–2403 (2016)CrossRef
16.
Zurück zum Zitat W.W. Shen, H.B. Mu, G.J. Zhang et al., Identification of electron and hole trap based on isothermal surface potential decay model. J. Appl. Phys. 113, 083706 (2013)CrossRef W.W. Shen, H.B. Mu, G.J. Zhang et al., Identification of electron and hole trap based on isothermal surface potential decay model. J. Appl. Phys. 113, 083706 (2013)CrossRef
17.
Zurück zum Zitat T.C. Zhou, G. Chen, R.J. Liao et al., Charge trapping and de-trapping in polymeric materials: trapping parameters. J. Appl. Phys. 110, 043724 (2011)CrossRef T.C. Zhou, G. Chen, R.J. Liao et al., Charge trapping and de-trapping in polymeric materials: trapping parameters. J. Appl. Phys. 110, 043724 (2011)CrossRef
18.
Zurück zum Zitat M. Meunier, N. Quirke, Molecular modeling of electron trapping in polymer insulators. J. Chem. Phys. 113, 369–376 (2000)CrossRef M. Meunier, N. Quirke, Molecular modeling of electron trapping in polymer insulators. J. Chem. Phys. 113, 369–376 (2000)CrossRef
19.
Zurück zum Zitat M. Meunier, N. Quirke, A. Aslanides, Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. J. Chem. Phys. 115, 2876–2881 (2001)CrossRef M. Meunier, N. Quirke, A. Aslanides, Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. J. Chem. Phys. 115, 2876–2881 (2001)CrossRef
20.
Zurück zum Zitat J.G. Simmons, M.C. Tam, Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 7(8), 3706–3713 (1973)CrossRef J.G. Simmons, M.C. Tam, Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 7(8), 3706–3713 (1973)CrossRef
Metadaten
Titel
Effect of insulation barrier on AC breakdown voltage of rod-plane gaps and analysis of surface residual charge property
verfasst von
Guochang Li
Jiaxing Wang
Yanhui Wei
Shengtao Li
Jingbing Wang
Haibin Zan
Publikationsdatum
15.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01283-3

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt