Skip to main content
Erschienen in: Journal of Iron and Steel Research International 11/2021

07.02.2021 | Original Paper

Effect of isothermal temper embrittlement and subsequent hydrogen embrittlement on tensile properties of 2.25Cr–1Mo–0.25V base metal and welded metal

verfasst von: Zhi-peng Shen, Wei Fu, Ling-rui Kong, Han-han Ma, Xiao-hua He, Xiao-chun Yu, Chang-yu Zhou

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

2.25Cr–1Mo–0.25V base metal (BM) and welded metal (WM) with different temper embrittlement states were obtained by isothermal temper embrittlement test. The ductile–brittle transition temperature and the carbide size of temper embrittled 2.25Cr–1Mo–0.25V BM and WM increased with the isothermal tempering time. The increase in temper embrittlement time leads to a decrease in yield strength (YS) and ultimate tensile strength (UTS). Hydrogen embrittlement (HE) can decrease the ductility and increase YS and UTS of the material. The hydrogen embrittlement sensitivity and microstructure analysis both show a combined effect of HE and temper embrittlement. The deeper the temper embrittlement, the more sensitive the material to HE. When the hydrogen content in the material is low, the WM is less susceptible to HE due to its welding defects.
Literatur
[1]
Zurück zum Zitat H. Xu, X. Xia, L. Hua, Y. Sun, Y. Dai, Eng. Fail. Anal. 19 (2012) 43–50.CrossRef H. Xu, X. Xia, L. Hua, Y. Sun, Y. Dai, Eng. Fail. Anal. 19 (2012) 43–50.CrossRef
[2]
Zurück zum Zitat Y. Song, Z.L. Han, M.Y. Chai, B. Yang, Y.L. Liu, G.Y. Cheng, Y. Li, S. Ai, Materials 11 (2018) 788.CrossRef Y. Song, Z.L. Han, M.Y. Chai, B. Yang, Y.L. Liu, G.Y. Cheng, Y. Li, S. Ai, Materials 11 (2018) 788.CrossRef
[3]
Zurück zum Zitat G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar, Mater. Sci. Eng. A 286 (2000) 269–281.CrossRef G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar, Mater. Sci. Eng. A 286 (2000) 269–281.CrossRef
[4]
Zurück zum Zitat C.M. Younes, A.M. Steele, J.A. Nicholson, C.J. Barnett, Int. J. Hydrogen Energy 38 (2013) 4864–4876.CrossRef C.M. Younes, A.M. Steele, J.A. Nicholson, C.J. Barnett, Int. J. Hydrogen Energy 38 (2013) 4864–4876.CrossRef
[5]
Zurück zum Zitat Y. Yagodzinskyy, E. Malitckii, T. Saukkonen, H. Hänninen, Scripta Mater. 67 (2012) 931–934.CrossRef Y. Yagodzinskyy, E. Malitckii, T. Saukkonen, H. Hänninen, Scripta Mater. 67 (2012) 931–934.CrossRef
[6]
Zurück zum Zitat Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang, X.Y. Chen, Int. J. Hydrogen Energy 44 (2019) 22576–22583.CrossRef Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang, X.Y. Chen, Int. J. Hydrogen Energy 44 (2019) 22576–22583.CrossRef
[7]
Zurück zum Zitat A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, A.E. Stevenson, Corros. Sci. 78 (2014) 313–321.CrossRef A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, A.E. Stevenson, Corros. Sci. 78 (2014) 313–321.CrossRef
[8]
Zurück zum Zitat T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121 (2019) 197–207.CrossRef T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121 (2019) 197–207.CrossRef
[9]
Zurück zum Zitat T.E. García, C. Rodríguez, F.J. Belzunce, I.I. Cuesta, Mater. Sci. Eng. A 664 (2016) 165–176.CrossRef T.E. García, C. Rodríguez, F.J. Belzunce, I.I. Cuesta, Mater. Sci. Eng. A 664 (2016) 165–176.CrossRef
[10]
Zurück zum Zitat G. Manna, P. Castello, F. Harskamp, R. Hurst, B. Wilshire, Eng. Fract. Mech. 74 (2007) 956–968.CrossRef G. Manna, P. Castello, F. Harskamp, R. Hurst, B. Wilshire, Eng. Fract. Mech. 74 (2007) 956–968.CrossRef
[11]
Zurück zum Zitat S. Matsuoka, H. Tanaka, N. Homma, Y. Murakami, Int. J. Fract. 168 (2011) 101–112.CrossRef S. Matsuoka, H. Tanaka, N. Homma, Y. Murakami, Int. J. Fract. 168 (2011) 101–112.CrossRef
[12]
Zurück zum Zitat J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scripta Mater. 63 (2010) 261–264.CrossRef J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scripta Mater. 63 (2010) 261–264.CrossRef
[13]
[14]
Zurück zum Zitat H. Su, H. Toda, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Watanabe, Acta Mater. 176 (2019) 96–108.CrossRef H. Su, H. Toda, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Watanabe, Acta Mater. 176 (2019) 96–108.CrossRef
[15]
Zurück zum Zitat Q. Li, Y.Q. Hu, G.X. Cheng, Z.X. Zhang, X.W. Liang, in: Pressure Vessels and Piping Conference, ASME, San Antonio, Texas, USA, 2019, pp. PVP2019-93510, V001T01A075. Q. Li, Y.Q. Hu, G.X. Cheng, Z.X. Zhang, X.W. Liang, in: Pressure Vessels and Piping Conference, ASME, San Antonio, Texas, USA, 2019, pp. PVP2019-93510, V001T01A075.
[16]
Zurück zum Zitat S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrogen Energy 43 (2018) 21603–21616.CrossRef S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrogen Energy 43 (2018) 21603–21616.CrossRef
[17]
Zurück zum Zitat T. Sharma, S.K. Bonagani, N. Naveen Kumar, D. Harish, K.V. Mani Krishna, I. Samajdar, V. Kain, J. Nucl. Mater. 527 (2019) 151817. T. Sharma, S.K. Bonagani, N. Naveen Kumar, D. Harish, K.V. Mani Krishna, I. Samajdar, V. Kain, J. Nucl. Mater. 527 (2019) 151817.
[18]
Zurück zum Zitat Y. Murakami, T. Nomura, J. Watanabe, in: G. Sangdahl, M. Semchyshen (Eds.), Application of 2¼ Cr–1 Mo Steel for Thick-Wall Pressure Vessels, ASTM International, West Conshohocken, PA, USA, 1982, pp. 383–417. Y. Murakami, T. Nomura, J. Watanabe, in: G. Sangdahl, M. Semchyshen (Eds.), Application of 2¼ Cr–1 Mo Steel for Thick-Wall Pressure Vessels, ASTM International, West Conshohocken, PA, USA, 1982, pp. 383–417.
[19]
[20]
[21]
Zurück zum Zitat J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153 (2018) 193–204.CrossRef J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153 (2018) 193–204.CrossRef
[23]
Zurück zum Zitat GB229–2007, Metallic materials-Charpy pendulum impact test method, China, 2007. GB229–2007, Metallic materials-Charpy pendulum impact test method, China, 2007.
[24]
[25]
Zurück zum Zitat M. Koyama, E. Akiyama, K. Tsuzaki, Scripta Mater. 66 (2012) 947–950.CrossRef M. Koyama, E. Akiyama, K. Tsuzaki, Scripta Mater. 66 (2012) 947–950.CrossRef
[26]
[27]
[28]
Zurück zum Zitat A.L. Cardenas, R.O. Silva, C.B. Eckstein, D.S. dos Santos, Int. J. Hydrogen Energy 43 (2018) 16400–16410.CrossRef A.L. Cardenas, R.O. Silva, C.B. Eckstein, D.S. dos Santos, Int. J. Hydrogen Energy 43 (2018) 16400–16410.CrossRef
[29]
Zurück zum Zitat Y.F. Wang, G.X. Cheng, M. Qin, Q. Li, Z.X. Zhang, K. Chen, Y. Li, H.J. Hu, W. Wu, J.X. Zhang, Int. J. Hydrogen Energy 42 (2017) 24549–24559.CrossRef Y.F. Wang, G.X. Cheng, M. Qin, Q. Li, Z.X. Zhang, K. Chen, Y. Li, H.J. Hu, W. Wu, J.X. Zhang, Int. J. Hydrogen Energy 42 (2017) 24549–24559.CrossRef
[30]
Zurück zum Zitat B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-del-Castillo, Mater. Des. 43 (2013) 499–506.CrossRef B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-del-Castillo, Mater. Des. 43 (2013) 499–506.CrossRef
[31]
[32]
Zurück zum Zitat J.B. Chen, H.B. Liu, Z.Y. Pan, K. Shi, H.Q. Zhang, J.F. Li, Mater. Sci. Eng. A 622 (2015) 153–159.CrossRef J.B. Chen, H.B. Liu, Z.Y. Pan, K. Shi, H.Q. Zhang, J.F. Li, Mater. Sci. Eng. A 622 (2015) 153–159.CrossRef
[33]
[34]
Zurück zum Zitat X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, M.Q. Wang, Corros. Sci. 166 (2020) 108421.CrossRef X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, M.Q. Wang, Corros. Sci. 166 (2020) 108421.CrossRef
[35]
Zurück zum Zitat S. Park, C. Park, Y. Na, H.S. Kim, N. Kang, J. Alloy. Compd. 770 (2019) 222–228.CrossRef S. Park, C. Park, Y. Na, H.S. Kim, N. Kang, J. Alloy. Compd. 770 (2019) 222–228.CrossRef
[36]
[37]
Zurück zum Zitat H.J. Kang, J.S. Yoo, J.T. Park, S.T. Ahn, N. Kang, K.M. Cho, Mater. Sci. Eng. A 543 (2012) 6–11.CrossRef H.J. Kang, J.S. Yoo, J.T. Park, S.T. Ahn, N. Kang, K.M. Cho, Mater. Sci. Eng. A 543 (2012) 6–11.CrossRef
Metadaten
Titel
Effect of isothermal temper embrittlement and subsequent hydrogen embrittlement on tensile properties of 2.25Cr–1Mo–0.25V base metal and welded metal
verfasst von
Zhi-peng Shen
Wei Fu
Ling-rui Kong
Han-han Ma
Xiao-hua He
Xiao-chun Yu
Chang-yu Zhou
Publikationsdatum
07.02.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 11/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00545-3

Weitere Artikel der Ausgabe 11/2021

Journal of Iron and Steel Research International 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.