Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2019

18.03.2019

Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane

verfasst von: Ying Li, Chenggong Li, Liang Zhang, Wenying Zhou

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intrinsic insulating and thermal conductive polymers were prepared by synthesizing liquid-crystalline polysiloxanes elastomer (LCPE) with chemical cross-linking (0.83 W/m K and 0.81 W/m K). The microscopic-ordered structures were found in LCPE and considered affording high thermal conductivity. Chemical structures were observed by hydrogen nuclear magnetic resonance spectroscopy (1H-NMR) and fourier transform infrared (FT-IR) spectroscopy. Microscopic-ordered structures were analyzed by polarizing optical microscopy, scanning electron microscope and X-ray diffraction. Thermal conductivities were calculated according to equation: λ = α·ρ·Cp. Thermal properties were researched by differential scanning calorimeter and thermal gravimetric analyzer. The results revealed that LCPE showed high thermal conductivity because of the microscopic-ordered structures existing. The phonon scattering was suppressed and the mean free path of phonon was extended maximally. In addition, phonon conduction path was more complete. Our study provided a useful method to enhance the thermal conductivities of intrinsic thermal conductivity polymer themselves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Seshadri, G.L. Esquenazi, T. Cardinal et al., Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites. Nanotechnology 27(17), 175601 (2016)CrossRef I. Seshadri, G.L. Esquenazi, T. Cardinal et al., Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites. Nanotechnology 27(17), 175601 (2016)CrossRef
2.
Zurück zum Zitat W. Chen, Z.F. Wang, C.Y. Zhi et al., High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos. Sci. Technol. 130, 63–69 (2016)CrossRef W. Chen, Z.F. Wang, C.Y. Zhi et al., High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos. Sci. Technol. 130, 63–69 (2016)CrossRef
3.
Zurück zum Zitat Y. Li, L. Zhang, Z.Z. Hou, Preparation and properties of graphene oxide/glycidyl methacrylate grafted natural rubber nanocomposites. J. Polym. Environ. 25(2), 1–8 (2016) Y. Li, L. Zhang, Z.Z. Hou, Preparation and properties of graphene oxide/glycidyl methacrylate grafted natural rubber nanocomposites. J. Polym. Environ. 25(2), 1–8 (2016)
4.
Zurück zum Zitat L. Xu, W. Zhou, Y. Gong, et al., Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles. J. Mater. Sci. Mater. Electron. 29(15), 13376–13388 (2018)CrossRef L. Xu, W. Zhou, Y. Gong, et al., Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles. J. Mater. Sci. Mater. Electron. 29(15), 13376–13388 (2018)CrossRef
5.
Zurück zum Zitat Q. Li, L. Chen, M.R. Gadinski et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)CrossRef Q. Li, L. Chen, M.R. Gadinski et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)CrossRef
6.
Zurück zum Zitat H. Chena, V.V. Ginzburgb, J. Yangc et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016)CrossRef H. Chena, V.V. Ginzburgb, J. Yangc et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016)CrossRef
7.
Zurück zum Zitat H. Yeo, A.M. Islam, N.H. You et al., Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol. 141, 99–105 (2017)CrossRef H. Yeo, A.M. Islam, N.H. You et al., Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol. 141, 99–105 (2017)CrossRef
8.
Zurück zum Zitat K. Ahn, K. Kim, J. Kim, Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire. Polymer 76, 313–320 (2015)CrossRef K. Ahn, K. Kim, J. Kim, Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire. Polymer 76, 313–320 (2015)CrossRef
9.
Zurück zum Zitat V. Singh, T.L. Bougher, A. Weathers et al., High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotech 9, 384–390 (2014)CrossRef V. Singh, T.L. Bougher, A. Weathers et al., High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotech 9, 384–390 (2014)CrossRef
10.
Zurück zum Zitat T. Giang, J. Kim, Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy–alumina composites. J. Electron. Mater. 46(1), 1–10 (2017)CrossRef T. Giang, J. Kim, Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy–alumina composites. J. Electron. Mater. 46(1), 1–10 (2017)CrossRef
11.
Zurück zum Zitat T. Zhang, T.F. Luo, Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B 120, 803–812 (2016)CrossRef T. Zhang, T.F. Luo, Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B 120, 803–812 (2016)CrossRef
12.
Zurück zum Zitat H. Ma, Z.T. Tian, Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films. Appl. Phys. Lett. 107, 073111 (2015)CrossRef H. Ma, Z.T. Tian, Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films. Appl. Phys. Lett. 107, 073111 (2015)CrossRef
13.
Zurück zum Zitat X.Y. Hang, S. Wang, M. Zhang et al., Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. Nanotechnology 26(1), 015705–015714 (2015)CrossRef X.Y. Hang, S. Wang, M. Zhang et al., Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. Nanotechnology 26(1), 015705–015714 (2015)CrossRef
14.
Zurück zum Zitat Z.X. Zhong, M.C. Wingert, J. Strzalka et al., Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale 6(14), 8283–8291 (2014)CrossRef Z.X. Zhong, M.C. Wingert, J. Strzalka et al., Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale 6(14), 8283–8291 (2014)CrossRef
15.
Zurück zum Zitat L. Zhang, M. Ruesch, X.L. Zhang et al., Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding. RSC Adv. 5(107), 87981–87986 (2015)CrossRef L. Zhang, M. Ruesch, X.L. Zhang et al., Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding. RSC Adv. 5(107), 87981–87986 (2015)CrossRef
16.
Zurück zum Zitat X. Xie, D.Y. Li, T.H. Tsai et al., Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends. Macromolecules 49, 972–978 (2016)CrossRef X. Xie, D.Y. Li, T.H. Tsai et al., Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends. Macromolecules 49, 972–978 (2016)CrossRef
17.
Zurück zum Zitat V. Mathur, K. Sharma, Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends. Heat Mass Transfer, 52(12), 2901–2911 (2016)CrossRef V. Mathur, K. Sharma, Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends. Heat Mass Transfer, 52(12), 2901–2911 (2016)CrossRef
18.
Zurück zum Zitat S. Kawamoto, H. Fujiwara, S. Nishimura, Hydrogen characteristics and ordered structure of mono-mesogen type liquid-crystalline epoxy polymer. Int. J. Hydrog. Energy, 41(18), 7500–7510 (2016)CrossRef S. Kawamoto, H. Fujiwara, S. Nishimura, Hydrogen characteristics and ordered structure of mono-mesogen type liquid-crystalline epoxy polymer. Int. J. Hydrog. Energy, 41(18), 7500–7510 (2016)CrossRef
19.
Zurück zum Zitat M. Akatsuka, Y. Takezawa, Ductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 89(9), 2464–2467 (2003)CrossRef M. Akatsuka, Y. Takezawa, Ductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 89(9), 2464–2467 (2003)CrossRef
20.
Zurück zum Zitat Y. Li, G.C. Zhang, Y. Jiang et al., Synthesis and liquid crystal properites of novel liquid crystal monomer: p-hydroxybenzoic acid p-cyano phenol ester. Chin. J. Synth. Chem. 19(6), 714–717 (2011) Y. Li, G.C. Zhang, Y. Jiang et al., Synthesis and liquid crystal properites of novel liquid crystal monomer: p-hydroxybenzoic acid p-cyano phenol ester. Chin. J. Synth. Chem. 19(6), 714–717 (2011)
21.
Zurück zum Zitat S. Yu, C. Park, S.M. Hong, M.K. Chong, Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim. Acta 583(7), 67–71 (2014)CrossRef S. Yu, C. Park, S.M. Hong, M.K. Chong, Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim. Acta 583(7), 67–71 (2014)CrossRef
Metadaten
Titel
Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane
verfasst von
Ying Li
Chenggong Li
Liang Zhang
Wenying Zhou
Publikationsdatum
18.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01150-1

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science: Materials in Electronics 9/2019 Zur Ausgabe

Neuer Inhalt