Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 3/2012

01.03.2012 | LCA FOR ENERGY SYSTEMS

Effect of mine characteristics on life cycle impacts of US surface coal mining

verfasst von: Ofentse Ditsele, Kwame Awuah-Offei

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

This study’s aim was to understand the effect of mine characteristics on cradle-to-gate life cycle impacts of surface coal mining in the USA. Five bituminous coal strip mines were used as case studies. The study assessed the life cycle water use, land use, energy use, abiotic resource depletion, and climate change impacts.

Methods

The study employed the general principles of the ISO 14040-49 series LCA standards, modifying them where necessary. The functional unit was defined as “one tonne of processed coal at the mine gate.” The relative mass–energy–economic value method, with some modification, was used to scope the product system. Data were obtained from environmental impact statements, coal mining permit applications, government reports, and published literature. Life cycle impact assessment (LCIA) included classification and characterization but no normalization, grouping, or weighting, to avoid ambiguity. In this work, mid-point characterization models were preferred over damage-oriented (end-point) characterization models because of their high levels of uncertainties. The LCIA also included sensitivity analysis.

Results and discussion

For the studied mines, life cycle potential water use impact is 178 l/tonne of processed coal at the mine gate. The potential land use, energy use, abiotic resource depletion, and climate change impacts range from 3 to 10 m2 year/tonne, 97 to 181 MJ/tonne, 7.8 to 9.4 kg Sb-eq./tonne, and 38 to 92 kg CO2-eq./tonne, respectively. Land use impacts depend mainly on land for coal extraction activities and the climatic conditions of a region, which affects the vegetation recovery rate, following reclamation. Economies of scale significantly influence land use, energy use, abiotic resource depletion, and climate change impacts. Geology, which determines stripping ratio, coal quality, and coalbed methane, affects land use, climate change, and energy use impacts, particularly energy for overburden removal, reclamation, and beneficiation.

Conclusions

The data show that large-scale mining operations have lower life cycle impacts due to economies of scale, which results in lower energy use. Also, land use impacts, measured by land occupation, are affected by geologic conditions. This study provides insight into sources of variability in life cycle impacts of coal mining. The authors recommend timely reclamation to minimize land occupation impacts, as well as adoption of large-scale production, where appropriate, for efficient use of land occupied by mine facilities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Stripping ratio is the ratio of overburden (material overlying the coal seam) to the amount of coal.
 
Literatur
Zurück zum Zitat Aimone CT (1992) Blast design. In: Hartman HL (ed) SME mining engineering handbook, vol. 1, 2nd edn. Society for Mining Metallurgy, and Exploration, Littleton, pp 722–746 Aimone CT (1992) Blast design. In: Hartman HL (ed) SME mining engineering handbook, vol. 1, 2nd edn. Society for Mining Metallurgy, and Exploration, Littleton, pp 722–746
Zurück zum Zitat Argonne (2009) Operating manual for GREET. Argonne National Laboratory, Argonne Argonne (2009) Operating manual for GREET. Argonne National Laboratory, Argonne
Zurück zum Zitat Babbitt CW, Lindner AS (2005) A life cycle inventory of coal used for electricity production in Florida. J Clean Prod 13:903–912CrossRef Babbitt CW, Lindner AS (2005) A life cycle inventory of coal used for electricity production in Florida. J Clean Prod 13:903–912CrossRef
Zurück zum Zitat Baumann H, Tillman A (2004) The hitch hiker’s guide to LCA: an orientation in life cycle assessment methodology and application. Studentlitetteratur, Lund Baumann H, Tillman A (2004) The hitch hiker’s guide to LCA: an orientation in life cycle assessment methodology and application. Studentlitetteratur, Lund
Zurück zum Zitat Chinh LD, Gheewala SH, Bonnet S (2007) Integrated environmental assessment and pollution prevention in Vietnam: the case of anthracite production. J Clean Prod 15:1768–1777CrossRef Chinh LD, Gheewala SH, Bonnet S (2007) Integrated environmental assessment and pollution prevention in Vietnam: the case of anthracite production. J Clean Prod 15:1768–1777CrossRef
Zurück zum Zitat Czaplicka-Kolarz K, Wachowicz J, Bojarska-Kraus M (2004) A life cycle method for assessment of a colliery’s eco-indicator. Int J Life Cycle Assess 9:247–253CrossRef Czaplicka-Kolarz K, Wachowicz J, Bojarska-Kraus M (2004) A life cycle method for assessment of a colliery’s eco-indicator. Int J Life Cycle Assess 9:247–253CrossRef
Zurück zum Zitat Day SJN, Carras JN, Fry R, Williams DJ (2010) Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation. Environ Monit Assess 166:529–541CrossRef Day SJN, Carras JN, Fry R, Williams DJ (2010) Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation. Environ Monit Assess 166:529–541CrossRef
Zurück zum Zitat Ditsele O (2010) Application of life cycle assessment to estimate environmental impacts of surface coal mining. Missouri University of Science & Technology, Rolla Ditsele O (2010) Application of life cycle assessment to estimate environmental impacts of surface coal mining. Missouri University of Science & Technology, Rolla
Zurück zum Zitat EPA (2009) The emissions & generation resource integrated database: eGRID 2007 Version 1.0. US Environmental Protection Agency Office of Atmospheric Programs Climate Protection Partnerships, Division, EP-D-06-001, April 2009, Washington, DC. http://www.epa.gov/egrid. Accessed 16 Mar 2011 EPA (2009) The emissions & generation resource integrated database: eGRID 2007 Version 1.0. US Environmental Protection Agency Office of Atmospheric Programs Climate Protection Partnerships, Division, EP-D-06-001, April 2009, Washington, DC. http://​www.​epa.​gov/​egrid. Accessed 16 Mar 2011
Zurück zum Zitat Froese RE, Shonnard DR, Miller CA, Koers KP, Johnson DM (2010) An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Biomass Bioenerg 34:251–262CrossRef Froese RE, Shonnard DR, Miller CA, Koers KP, Johnson DM (2010) An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Biomass Bioenerg 34:251–262CrossRef
Zurück zum Zitat Guinée JB (2002) Handbook on life cycle assessment: operational guide to ISO standards. Kluwer Academic, Secaucus Guinée JB (2002) Handbook on life cycle assessment: operational guide to ISO standards. Kluwer Academic, Secaucus
Zurück zum Zitat Infomine (2009) Mine and mill equipment cost. Infomine USA, Spokane Valley Infomine (2009) Mine and mill equipment cost. Infomine USA, Spokane Valley
Zurück zum Zitat IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York
Zurück zum Zitat Kim S, Dale BE (2005) Life cycle inventory information of the United States electricity system. Int J Life Cycle Assess 10:294–304CrossRef Kim S, Dale BE (2005) Life cycle inventory information of the United States electricity system. Int J Life Cycle Assess 10:294–304CrossRef
Zurück zum Zitat Lindeijer E (2005) How far should we improve impact assessment methodology for metal mining? Illustrated with a biodiversity LCIA method. In: Dubreuil A (ed) Life-cycle assessment of metals: Issues and research directions. SETAC, Raleigh, pp 123–131 Lindeijer E (2005) How far should we improve impact assessment methodology for metal mining? Illustrated with a biodiversity LCIA method. In: Dubreuil A (ed) Life-cycle assessment of metals: Issues and research directions. SETAC, Raleigh, pp 123–131
Zurück zum Zitat Mangena SJ, Brent AC (2006) Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products. J Clean Prod 14:1071–1084CrossRef Mangena SJ, Brent AC (2006) Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products. J Clean Prod 14:1071–1084CrossRef
Zurück zum Zitat Raynolds M, Fraser R, Checkel D (2000) The relative mass–energy–economic value (RMEE) method for system boundary selection—part I: a means to systematically and quantitatively select LCA boundaries. Int J Life Cycle Assess 5:96–104CrossRef Raynolds M, Fraser R, Checkel D (2000) The relative mass–energy–economic value (RMEE) method for system boundary selection—part I: a means to systematically and quantitatively select LCA boundaries. Int J Life Cycle Assess 5:96–104CrossRef
Zurück zum Zitat Ruether JA, Ramezan M, Balash PC (2004) Greenhouse gas emissions from coal gasification power generation systems. J Infrastruct Syst 10:111–119CrossRef Ruether JA, Ramezan M, Balash PC (2004) Greenhouse gas emissions from coal gasification power generation systems. J Infrastruct Syst 10:111–119CrossRef
Zurück zum Zitat Schreiber A, Zapp P, Kuckshinrichs W (2009) Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. Int J Life Cycle Assess 14:547–559CrossRef Schreiber A, Zapp P, Kuckshinrichs W (2009) Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. Int J Life Cycle Assess 14:547–559CrossRef
Zurück zum Zitat Spitzley DV, Tolle DA (2004) Evaluating land-use impacts: selection of surface area metrics for life-cycle assessment of mining. J Ind Ecol 8:11–21CrossRef Spitzley DV, Tolle DA (2004) Evaluating land-use impacts: selection of surface area metrics for life-cycle assessment of mining. J Ind Ecol 8:11–21CrossRef
Metadaten
Titel
Effect of mine characteristics on life cycle impacts of US surface coal mining
verfasst von
Ofentse Ditsele
Kwame Awuah-Offei
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 3/2012
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-011-0354-y

Weitere Artikel der Ausgabe 3/2012

The International Journal of Life Cycle Assessment 3/2012 Zur Ausgabe