Skip to main content
Erschienen in: Journal of Iron and Steel Research International 8/2022

01.11.2021 | Original Paper

Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transition-temperature in a 1000 MPa Ni–Cr–Mo–Cu steel

verfasst von: Fei Zhu, Li Yang, Feng Chai, Xiao-bing Luo, Cai-fu Yang, Zheng-yan Zhang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A superior combination of yield strength (1001 MPa) and − 20 °C impact toughness (166 J) was obtained in Nb–V–Ti-microalloyed Ni–Cr–Mo–Cu steel treated by direct quenching and tempering route (DQT). The tested steels treated by DQT route and re-austenitization and tempering route (QT) were compared with each other in terms of mechanical properties and microstructures characterized by optical microscopy, transmission electron microscopy, X-ray diffraction, electron back-scattered diffraction method and so on. Strength and Vickers hardness of the tested steel treated by the above two routes vary with isothermal aging temperature (400–600 °C), shown as under-aged state, peak-aged state and over-aged state. All DQT specimens show higher strength and Vickers hardness than QT specimens with the same aging condition. Furthermore, the largest difference of yield strength between DQT and QT specimens was shown in DQT600 and QT600 specimens. DQT600 or QT600 specimens refers to direct quenched (DQ) or quenched (Q) specimens isothermally aged at 600 °C. The main disparities in quenched microstructure between DQ and Q specimens are mainly in morphology of prior austenite grains, dislocation density of martensite matrix and solution amount of Nb and Mo elements dissolving in martensite matrix, which play key roles in affecting microstructure and mechanical properties of DQT and QT specimens. Higher dislocation density of matrix and finer average diameter of both MC (M is any combination of Nb, Mo and V) and Cu-rich particles were shown in DQT600 specimens than in QT600 specimens. Strengthening from dislocations and nanosized MC and Cu-rich particles mainly leads to the largest difference of yield strength between DQT600 and QT600 specimens. In addition, strong dislocation strengthening and precipitation strengthening in DQT600 specimen also elevated its ductile-to-brittle-transition-temperature, compared with QT600 specimen.
Literatur
[1]
Zurück zum Zitat D. Jain, D. Isheim, D.N. Seidman, Metall. Mater. Trans. A 48 (2017) 3205–3219.CrossRef D. Jain, D. Isheim, D.N. Seidman, Metall. Mater. Trans. A 48 (2017) 3205–3219.CrossRef
[2]
Zurück zum Zitat Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97 (2015) 58–67.CrossRef Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97 (2015) 58–67.CrossRef
[3]
[4]
Zurück zum Zitat S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363–373.CrossRef S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363–373.CrossRef
[5]
Zurück zum Zitat S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 32 (2001) 2259–2270.CrossRef S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 32 (2001) 2259–2270.CrossRef
[6]
Zurück zum Zitat H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619–624.CrossRef H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619–624.CrossRef
[7]
Zurück zum Zitat M.K. Miller, K.F. Russell, P. Pareige, M.J. Starink, R.C. Thomson, Mater. Sci. Eng. A 250 (1998) 49–54.CrossRef M.K. Miller, K.F. Russell, P. Pareige, M.J. Starink, R.C. Thomson, Mater. Sci. Eng. A 250 (1998) 49–54.CrossRef
[8]
Zurück zum Zitat W. Wang, B. Zhou, G. Xu, D.F. Chu, J.C. Peng, Mater. Charact. 62 (2011) 438–441.CrossRef W. Wang, B. Zhou, G. Xu, D.F. Chu, J.C. Peng, Mater. Charact. 62 (2011) 438–441.CrossRef
[9]
Zurück zum Zitat K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, ISIJ Int. 34 (1994) 359–365.CrossRef K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, ISIJ Int. 34 (1994) 359–365.CrossRef
[10]
[11]
Zurück zum Zitat G.C. Hwang, S. Lee, J.Y. Yoo, W.Y. Choo, Mater. Sci. Eng. A 252 (1998) 256–268.CrossRef G.C. Hwang, S. Lee, J.Y. Yoo, W.Y. Choo, Mater. Sci. Eng. A 252 (1998) 256–268.CrossRef
[12]
Zurück zum Zitat J.Y. Yoo, W.Y. Choo, T.W. Park, Y.W. Kim, ISIJ Int. 35 (1995) 1034–1040.CrossRef J.Y. Yoo, W.Y. Choo, T.W. Park, Y.W. Kim, ISIJ Int. 35 (1995) 1034–1040.CrossRef
[13]
[14]
Zurück zum Zitat Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, E.J. Lavernia, Metall. Mater. Trans. A 47 (2016) 1960–1974.CrossRef Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, E.J. Lavernia, Metall. Mater. Trans. A 47 (2016) 1960–1974.CrossRef
[15]
Zurück zum Zitat X.H. Xi, J.L. Wang, X. Li, L.Q. Chen, Z.D. Wang, Metall. Mater. Trans. A 50 (2019) 2912–2921.CrossRef X.H. Xi, J.L. Wang, X. Li, L.Q. Chen, Z.D. Wang, Metall. Mater. Trans. A 50 (2019) 2912–2921.CrossRef
[16]
Zurück zum Zitat D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47 (2016) 3860–3872.CrossRef D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47 (2016) 3860–3872.CrossRef
[17]
Zurück zum Zitat Y. Zhao, S.S. Xu, J.P. Li, J. Zhang, L.W. Sun, L. Chen, G.G. Sun, S.M. Peng, Z.W. Zhang, Mater. Sci. Eng. A 691 (2017) 162–167.CrossRef Y. Zhao, S.S. Xu, J.P. Li, J. Zhang, L.W. Sun, L. Chen, G.G. Sun, S.M. Peng, Z.W. Zhang, Mater. Sci. Eng. A 691 (2017) 162–167.CrossRef
[18]
Zurück zum Zitat Z.J. Xie, C.J. Shang, X.L. Wang, X.P. Ma, S.V. Subramanian, R.D.K. Misra, Mater. Sci. Eng. A 727 (2018) 200–207.CrossRef Z.J. Xie, C.J. Shang, X.L. Wang, X.P. Ma, S.V. Subramanian, R.D.K. Misra, Mater. Sci. Eng. A 727 (2018) 200–207.CrossRef
[20]
Zurück zum Zitat P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119 (2016) 43–54.CrossRef P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119 (2016) 43–54.CrossRef
[22]
Zurück zum Zitat S.C. Chen, C.Y. Huang, Y.T. Wang, H.W. Yen, Mater. Des. 134 (2017) 434–445.CrossRef S.C. Chen, C.Y. Huang, Y.T. Wang, H.W. Yen, Mater. Des. 134 (2017) 434–445.CrossRef
[23]
Zurück zum Zitat R.L. Higginson, C.M. Sellars, Worked Examples in Quantitative Metallography, Maney, London, UK, 2003. R.L. Higginson, C.M. Sellars, Worked Examples in Quantitative Metallography, Maney, London, UK, 2003.
[24]
Zurück zum Zitat E.G. Dere, H. Sharma, R.H. Petrov, J. Sietsma, S.E. Offerman, Scripta Mater. 68 (2013) 651–654.CrossRef E.G. Dere, H. Sharma, R.H. Petrov, J. Sietsma, S.E. Offerman, Scripta Mater. 68 (2013) 651–654.CrossRef
[25]
Zurück zum Zitat J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Acta Mater. 61 (2013) 4939–4952.CrossRef J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Acta Mater. 61 (2013) 4939–4952.CrossRef
[26]
[27]
[28]
Zurück zum Zitat X.B. Luo, C.F. Yang, H. Su, F. Chai, Trans. Mater. Heat Treat. 32 (2011) No. 6, 73–77. X.B. Luo, C.F. Yang, H. Su, F. Chai, Trans. Mater. Heat Treat. 32 (2011) No. 6, 73–77.
[29]
Zurück zum Zitat B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.CrossRef B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.CrossRef
[30]
Zurück zum Zitat J. Liu, H. Yu, T. Zhou, C.H. Song, K. Zhang, Mater. Sci. Eng. A 619 (2014) 212–220.CrossRef J. Liu, H. Yu, T. Zhou, C.H. Song, K. Zhang, Mater. Sci. Eng. A 619 (2014) 212–220.CrossRef
[31]
Zurück zum Zitat R.H. Willens, E. Buehler, B.T. Matthias, Phys. Rev. 159 (1967) 327–330.CrossRef R.H. Willens, E. Buehler, B.T. Matthias, Phys. Rev. 159 (1967) 327–330.CrossRef
[32]
Zurück zum Zitat J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Acta Mater. 60 (2012) 208–217.CrossRef J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Acta Mater. 60 (2012) 208–217.CrossRef
[33]
Zurück zum Zitat Z.Y. Zhang, Z.D. Li, Q.L. Yong, X.J. Sun, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 51 (2015) 315–324. Z.Y. Zhang, Z.D. Li, Q.L. Yong, X.J. Sun, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 51 (2015) 315–324.
[34]
Zurück zum Zitat J.Z. Zhao, Q.L. Wang, H.L. Li, J. He, Metall. Mater. Trans. A 42 (2011) 3200–3207.CrossRef J.Z. Zhao, Q.L. Wang, H.L. Li, J. He, Metall. Mater. Trans. A 42 (2011) 3200–3207.CrossRef
[35]
Zurück zum Zitat D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.CrossRef D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.CrossRef
[36]
Zurück zum Zitat L.Z. Han, Q.D. Liu, J.F. Gu, Chin. J. Mech. Eng. (Engl. Ed.) 32 (2019) 818. L.Z. Han, Q.D. Liu, J.F. Gu, Chin. J. Mech. Eng. (Engl. Ed.) 32 (2019) 818.
[37]
Zurück zum Zitat R. Monzen, M.L. Jenkins, A.P. Sutton, Philos. Mag. A 80 (2000) 711–723.CrossRef R. Monzen, M.L. Jenkins, A.P. Sutton, Philos. Mag. A 80 (2000) 711–723.CrossRef
[38]
Zurück zum Zitat X.L. Li, P. Wu, R.J. Yang, S.T. Zhao, S.P. Zhang, S. Chen, X.Z. Cao, X.M. Wang, Mater. Des. 115 (2017) 165–169.CrossRef X.L. Li, P. Wu, R.J. Yang, S.T. Zhao, S.P. Zhang, S. Chen, X.Z. Cao, X.M. Wang, Mater. Des. 115 (2017) 165–169.CrossRef
[39]
Zurück zum Zitat D.S. Liu, M. Luo, B.B. Cheng, R. Cao, J.H. Chen, Metall. Mater. Trans. A 49 (2018) 4918–4936.CrossRef D.S. Liu, M. Luo, B.B. Cheng, R. Cao, J.H. Chen, Metall. Mater. Trans. A 49 (2018) 4918–4936.CrossRef
[40]
Zurück zum Zitat Q.L. Yong, Second phases in structural steels, Metallurgical industry press, Beijing, China, 2006. Q.L. Yong, Second phases in structural steels, Metallurgical industry press, Beijing, China, 2006.
[41]
Zurück zum Zitat Q.B. Yu, Z.D. Wang, X.H. Liu, G.D. Wang, Mater. Sci. Eng. A 379 (2004) 384–390.CrossRef Q.B. Yu, Z.D. Wang, X.H. Liu, G.D. Wang, Mater. Sci. Eng. A 379 (2004) 384–390.CrossRef
[42]
[43]
Zurück zum Zitat Y.L. Zhao, Microstructure Control and Strengthening Mechanism of 1500MPa Grade Direct Quenched Martensitic Steel, Kunming University of Science and Technology, Kuming, China, 2010. Y.L. Zhao, Microstructure Control and Strengthening Mechanism of 1500MPa Grade Direct Quenched Martensitic Steel, Kunming University of Science and Technology, Kuming, China, 2010.
[44]
Zurück zum Zitat Z.T. Li, F. Chai, L. Yang, X.B. Luo, C.F. Yang, Mater. Des. 191 (2020) 108637. Z.T. Li, F. Chai, L. Yang, X.B. Luo, C.F. Yang, Mater. Des. 191 (2020) 108637.
[45]
Zurück zum Zitat A. Saastamoinen, A. Kaijalainen, D. Porter, P. Suikkanen, J.R. Yang, Y.T. Tsai, Mater. Charact. 139 (2018) 1–10.CrossRef A. Saastamoinen, A. Kaijalainen, D. Porter, P. Suikkanen, J.R. Yang, Y.T. Tsai, Mater. Charact. 139 (2018) 1–10.CrossRef
[46]
Zurück zum Zitat Z.Y. Zhang, X.J. Sun, Q.L. Yong, Z.D. Li, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 52 (2016) 410–418. Z.Y. Zhang, X.J. Sun, Q.L. Yong, Z.D. Li, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 52 (2016) 410–418.
[47]
Zurück zum Zitat K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42 (2002) 1541–1545.CrossRef K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42 (2002) 1541–1545.CrossRef
[48]
Zurück zum Zitat G. Han, Z.J. Xie, L. Xiong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 705 (2017) 89–97.CrossRef G. Han, Z.J. Xie, L. Xiong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 705 (2017) 89–97.CrossRef
[49]
Zurück zum Zitat Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Chai, Acta Metall. Sin. 55 (2019) 783–791. Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Chai, Acta Metall. Sin. 55 (2019) 783–791.
[50]
Zurück zum Zitat J.H. Chen, R. Cao, Chapter 2 – Methodology, in: J.H. Chen, R. Cao (Eds.), Micromechanism of Cleavage Fracture of Metals, Butterworth–Heinemann, Boston, USA, 2015, pp. 55–80.CrossRef J.H. Chen, R. Cao, Chapter 2 – Methodology, in: J.H. Chen, R. Cao (Eds.), Micromechanism of Cleavage Fracture of Metals, Butterworth–Heinemann, Boston, USA, 2015, pp. 55–80.CrossRef
[52]
Zurück zum Zitat C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.CrossRef C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.CrossRef
[53]
Metadaten
Titel
Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transition-temperature in a 1000 MPa Ni–Cr–Mo–Cu steel
verfasst von
Fei Zhu
Li Yang
Feng Chai
Xiao-bing Luo
Cai-fu Yang
Zheng-yan Zhang
Publikationsdatum
01.11.2021
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 8/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00658-3

Weitere Artikel der Ausgabe 8/2022

Journal of Iron and Steel Research International 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.