Skip to main content
Erschienen in: Colloid and Polymer Science 7/2013

01.07.2013 | Original Contribution

Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites

verfasst von: Kishor Kumar Sadasivuni, Allisson Saiter, Nicolas Gautier, Sabu Thomas, Yves Grohens

Erschienen in: Colloid and Polymer Science | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(isobutylene-co-isoprene) (IIR)/graphene and cloisite10A nanocomposites were prepared successfully and the resulting mechanical, rheological and barrier properties were carefully evaluated and compared. Chemical treatments like maleic anhydride grafting were used to improve the dispersion of the clay in the IIR matrix. Blends with different loading (20, 40, 60, and 80 %) of maleic anhydride grafted poly(isobutylene-co-isoprene) (MA-g-IIR) and IIR were made to maintain a balance between the beneficial polarity induced by MA grafting and the inevitable decrease in molecular weight (due to chain scission) induced by the free radical grafting process. The highest moduli, tensile strength and elongation at break were achieved in the case of a 60:40 ratio of MA-g-IIR (grafting degree 0.75)/IIR mixture with 5 phr of cloisite 10A. IIR/graphene nanocomposites exhibited higher reinforcement (Young’s moduli) and lower gas permeability compared to the optimized clay nanocomposites with same weight percentage. The filler–elastomer and filler–filler interactions deduced from rheology, stress relaxation and Payne effect experiments emphasize the reinforcing ability in IIR/graphene and MA-g-IIR/clay. XRD, SEM and TEM results further substantiated the results from the obtained micro structure of the nanocomposites. The improved performances of IIR/MA-g-IIR/clay and IIR/graphene were successfully correlated with interactions between the filler platelets and elastomer chains occurring in the nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kamigaito O, Fukushima Y, Doi H (1984) Composite material composed of clay mineral and organic high polymer and method for producing the same. US patent 4,472,538 Kamigaito O, Fukushima Y, Doi H (1984) Composite material composed of clay mineral and organic high polymer and method for producing the same. US patent 4,472,538
2.
Zurück zum Zitat Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRef Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRef
3.
Zurück zum Zitat Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Sorption of water in nylon 6–clay hybrid. J Appl Polym Sci 49:1259–1264CrossRef Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Sorption of water in nylon 6–clay hybrid. J Appl Polym Sci 49:1259–1264CrossRef
4.
Zurück zum Zitat Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York
5.
Zurück zum Zitat LeBaron P, Wang Z, Pinnavaia T (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef LeBaron P, Wang Z, Pinnavaia T (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef
6.
Zurück zum Zitat Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layers silicate nanocomposites as high performance ablative material. Appl Clay Sci 15:67–92CrossRef Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layers silicate nanocomposites as high performance ablative material. Appl Clay Sci 15:67–92CrossRef
7.
Zurück zum Zitat Kim J, Oh T, Lee D (2003) Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym Int 52:1203–1208CrossRef Kim J, Oh T, Lee D (2003) Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym Int 52:1203–1208CrossRef
8.
Zurück zum Zitat Kim J, Oh T, Lee D (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52(7):1058–1063CrossRef Kim J, Oh T, Lee D (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52(7):1058–1063CrossRef
9.
Zurück zum Zitat Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23:217–223CrossRef Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23:217–223CrossRef
10.
Zurück zum Zitat Gatos KG, Sawanis NS, Apostolov AA, Thomann R, Karger-Kocsis J (2004) Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite as a function of the intercalant type. Macromol Mater Eng 289:1079–1086CrossRef Gatos KG, Sawanis NS, Apostolov AA, Thomann R, Karger-Kocsis J (2004) Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite as a function of the intercalant type. Macromol Mater Eng 289:1079–1086CrossRef
11.
Zurück zum Zitat Schon F, Thomanm R, Gronski W (2002) Shear controlled morphology of rubber/organoclay nanocomposites and dynamic mechanical analysis. Macromol Symp 189(1):105–110CrossRef Schon F, Thomanm R, Gronski W (2002) Shear controlled morphology of rubber/organoclay nanocomposites and dynamic mechanical analysis. Macromol Symp 189(1):105–110CrossRef
12.
Zurück zum Zitat Gatos KG, Thomanm R, Karger-Kocsis J (2004) Characteristics of ethylenepropylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191–1197CrossRef Gatos KG, Thomanm R, Karger-Kocsis J (2004) Characteristics of ethylenepropylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191–1197CrossRef
13.
Zurück zum Zitat Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of the caly modification and compatibilizer on the structure and mechanical properties of ethtlene–propylene–diene rubber/montmorillonite composites. J Appl Polym Sci 92(1):638–646CrossRef Zhang H, Zhang Y, Peng Z, Zhang Y (2004) Influence of the caly modification and compatibilizer on the structure and mechanical properties of ethtlene–propylene–diene rubber/montmorillonite composites. J Appl Polym Sci 92(1):638–646CrossRef
14.
Zurück zum Zitat Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47(11):1956–1974CrossRef Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47(11):1956–1974CrossRef
15.
Zurück zum Zitat Yanhu Z, Jinkui W, Hesheng X, Ning Y, Guoxia F, Guiping Y (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296(7):590–602CrossRef Yanhu Z, Jinkui W, Hesheng X, Ning Y, Guoxia F, Guiping Y (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296(7):590–602CrossRef
16.
Zurück zum Zitat Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochem Acta 442:74–77CrossRef Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochem Acta 442:74–77CrossRef
17.
Zurück zum Zitat Huiqin L, Shuxin L, Kelong L, Liangrui X, Kuisheng W, Wenli G (2011) Study on modified graphene/butylrubber nanocomposites: I. Preparation and characterization. Polym Eng Sci 51(11):2254–2260CrossRef Huiqin L, Shuxin L, Kelong L, Liangrui X, Kuisheng W, Wenli G (2011) Study on modified graphene/butylrubber nanocomposites: I. Preparation and characterization. Polym Eng Sci 51(11):2254–2260CrossRef
18.
Zurück zum Zitat Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Ind Eng Chem 16:1059–1065CrossRef Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Ind Eng Chem 16:1059–1065CrossRef
19.
Zurück zum Zitat Prud'Homme R, Ozbas B, Aksay I, Register R, Douglas A (2010) Functional graphene rubber nanocomposites. US patent 7,745,528 B2 Prud'Homme R, Ozbas B, Aksay I, Register R, Douglas A (2010) Functional graphene rubber nanocomposites. US patent 7,745,528 B2
20.
Zurück zum Zitat Xin B, Chaoying W, Yong Z, Yinghao Z (2011) Reinforcement of hydrogenated carboxylatednitrile–butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613CrossRef Xin B, Chaoying W, Yong Z, Yinghao Z (2011) Reinforcement of hydrogenated carboxylatednitrile–butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613CrossRef
21.
Zurück zum Zitat Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. J Chem Soc Rev 39:3157–3180CrossRef Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. J Chem Soc Rev 39:3157–3180CrossRef
22.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
23.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
24.
Zurück zum Zitat Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef
25.
Zurück zum Zitat Owen CC, Soyoung K, Cynthia P, John MT, SonBinh TN (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef Owen CC, Soyoung K, Cynthia P, John MT, SonBinh TN (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef
26.
Zurück zum Zitat Bharadwaj RK (2001) Modelling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192CrossRef Bharadwaj RK (2001) Modelling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192CrossRef
27.
Zurück zum Zitat Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38:161–174CrossRef Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38:161–174CrossRef
28.
Zurück zum Zitat Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci 5:929–942 Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci 5:929–942
29.
Zurück zum Zitat Stephen R, Varghese S, Joseph K, Oommen Z, Thomas S (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282:162CrossRef Stephen R, Varghese S, Joseph K, Oommen Z, Thomas S (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282:162CrossRef
30.
Zurück zum Zitat Meera AP, Thomas SP, Thomas S (2012) Effect of organoclay on the gas barrier properties of natural rubber nanocomposites. Polym Compos 33:524–531CrossRef Meera AP, Thomas SP, Thomas S (2012) Effect of organoclay on the gas barrier properties of natural rubber nanocomposites. Polym Compos 33:524–531CrossRef
31.
Zurück zum Zitat Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) The role of surfactant type and modifier concentration in tailoring the properties of chlorobutyl rubber/organo clay nanocomposites. J Appl Polym Sci 124:4590–4597 Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) The role of surfactant type and modifier concentration in tailoring the properties of chlorobutyl rubber/organo clay nanocomposites. J Appl Polym Sci 124:4590–4597
32.
Zurück zum Zitat Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) Chlorobutyl rubber nanocomposites as effective gas and VOC barrier materials. Compos A Appl Sci Manuf 43:864–870CrossRef Saritha A, Joseph K, Thomas S, Muraleekrishnan R (2012) Chlorobutyl rubber nanocomposites as effective gas and VOC barrier materials. Compos A Appl Sci Manuf 43:864–870CrossRef
33.
Zurück zum Zitat Hofmann W (1989) Rubber technology handbook, 2nd edn. Hanser Publishers, New York Hofmann W (1989) Rubber technology handbook, 2nd edn. Hanser Publishers, New York
34.
Zurück zum Zitat Qu L, Huang G, Wu J, Tang Z (2007) Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J Mater Sci 42:7256–7262CrossRef Qu L, Huang G, Wu J, Tang Z (2007) Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J Mater Sci 42:7256–7262CrossRef
35.
Zurück zum Zitat Makoto K, Azusa T, Hiromitsu T, Amritsu U, Isamu I (2006) Preparation and properties of isobutylene–isoprene rubber–clay nanocomposites. J Polym Sci A Polym Chem 44:1182–1188CrossRef Makoto K, Azusa T, Hiromitsu T, Amritsu U, Isamu I (2006) Preparation and properties of isobutylene–isoprene rubber–clay nanocomposites. J Polym Sci A Polym Chem 44:1182–1188CrossRef
36.
Zurück zum Zitat Liang Y, Ma J, Lu Y, Wu Y, Zhang L, Mai Y (2005) Effects of heat and pressure on intercalation structures of isobutylene/isoprene rubber clay nanocomposites. J Polym Sci B Polym Phys 43:2653–2664CrossRef Liang Y, Ma J, Lu Y, Wu Y, Zhang L, Mai Y (2005) Effects of heat and pressure on intercalation structures of isobutylene/isoprene rubber clay nanocomposites. J Polym Sci B Polym Phys 43:2653–2664CrossRef
37.
Zurück zum Zitat Sridhar V, Tripathy DK (2006) Barrier properties of chlorobutyl nanoclay composites. J Appl Polym Sci 101:3630–3637CrossRef Sridhar V, Tripathy DK (2006) Barrier properties of chlorobutyl nanoclay composites. J Appl Polym Sci 101:3630–3637CrossRef
38.
Zurück zum Zitat Ranimol S, Ranaganathaiah C, Siby V, Kuruvilla J, Thomas S (2006) Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:858–870CrossRef Ranimol S, Ranaganathaiah C, Siby V, Kuruvilla J, Thomas S (2006) Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:858–870CrossRef
39.
Zurück zum Zitat Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093CrossRef Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093CrossRef
40.
Zurück zum Zitat Gatos G, Százdi L, Pukánszky B, Karger-Kocsis J (2005) Controlling the deintercalation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by curing with peroxide. Macromol Rapid Commun 26:915–919CrossRef Gatos G, Százdi L, Pukánszky B, Karger-Kocsis J (2005) Controlling the deintercalation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by curing with peroxide. Macromol Rapid Commun 26:915–919CrossRef
41.
Zurück zum Zitat Liang YR, Wang YQ, Wu YP, Lu YL, Zhang HF, Zhang LQ (2005) Preparationand properties of isobutylene –isoprene (IIR)/clay nanocomposites. Polym Test 24:12–17CrossRef Liang YR, Wang YQ, Wu YP, Lu YL, Zhang HF, Zhang LQ (2005) Preparationand properties of isobutylene –isoprene (IIR)/clay nanocomposites. Polym Test 24:12–17CrossRef
42.
Zurück zum Zitat Yurong L, Weiliang C, Zhao L, Yiqing W, Youping W, Liqun Z (2008) A new strategy to improve the gas barrier property ofisobutylene–isoprene rubber/clay nanocomposites. Polym Test 27:270–276CrossRef Yurong L, Weiliang C, Zhao L, Yiqing W, Youping W, Liqun Z (2008) A new strategy to improve the gas barrier property ofisobutylene–isoprene rubber/clay nanocomposites. Polym Test 27:270–276CrossRef
43.
Zurück zum Zitat Samadi A, Kashani MR (2010) Effects of organo-clay modifier on physical–mechanical properties of butyl-based rubber nano-composites. J Appl Polym Sci 116:2101–2109 Samadi A, Kashani MR (2010) Effects of organo-clay modifier on physical–mechanical properties of butyl-based rubber nano-composites. J Appl Polym Sci 116:2101–2109
44.
Zurück zum Zitat Maiti M, Sadhu S, Bhowmick AK (2005) Effect of carbon black on properties of rubber nanocomposites. J Appl Polym Sci 96:443–451CrossRef Maiti M, Sadhu S, Bhowmick AK (2005) Effect of carbon black on properties of rubber nanocomposites. J Appl Polym Sci 96:443–451CrossRef
45.
Zurück zum Zitat Salahuddin N, Akelah A (2002) Synthesis and characterization of poly(styrene-maleic anhydride)–montmorillonite nanocomposite. Polym Adv Technol 13:339–345CrossRef Salahuddin N, Akelah A (2002) Synthesis and characterization of poly(styrene-maleic anhydride)–montmorillonite nanocomposite. Polym Adv Technol 13:339–345CrossRef
46.
Zurück zum Zitat Li XC, Ha CS (2003) Nanostructure of EVA/organoclay nanocomposites: effects of kinds of organoclays and grafting of maleic anhydride on to EVA. J Appl Polym Sci 87(12):1901–1909CrossRef Li XC, Ha CS (2003) Nanostructure of EVA/organoclay nanocomposites: effects of kinds of organoclays and grafting of maleic anhydride on to EVA. J Appl Polym Sci 87(12):1901–1909CrossRef
47.
Zurück zum Zitat Gunberg PF, Ridgewood NJ (1958) Maleic anhydride modified butyl rubber. US Patent 2,845,403 Gunberg PF, Ridgewood NJ (1958) Maleic anhydride modified butyl rubber. US Patent 2,845,403
48.
Zurück zum Zitat Daniela CM, Dmitry VK, Jacob MB, Alexander S, Zhengzong S, Alexander S, Lawrence BA, Wei L, James MT (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef Daniela CM, Dmitry VK, Jacob MB, Alexander S, Zhengzong S, Alexander S, Lawrence BA, Wei L, James MT (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef
49.
Zurück zum Zitat Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
50.
Zurück zum Zitat McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef
51.
Zurück zum Zitat Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39:5100–5105CrossRef Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39:5100–5105CrossRef
52.
Zurück zum Zitat Fordiani F, Aubry T, Grohens Y (2009) Structural changes evidenced by rheology in PP-g-MA nanocomposites during oxidative ageing. J Appl Polym Sci 114(6):4011–4019CrossRef Fordiani F, Aubry T, Grohens Y (2009) Structural changes evidenced by rheology in PP-g-MA nanocomposites during oxidative ageing. J Appl Polym Sci 114(6):4011–4019CrossRef
53.
Zurück zum Zitat Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44CrossRef Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44CrossRef
54.
Zurück zum Zitat Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22(7):756–779CrossRef Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22(7):756–779CrossRef
55.
Zurück zum Zitat Li J, Zhou C, Wang G, Yu W, Tao Y, Liu Q (2003) Preparation and linear rheological behavior of polypropylene–montmorillonite nanocomposites. Polym Compos 24:323–331CrossRef Li J, Zhou C, Wang G, Yu W, Tao Y, Liu Q (2003) Preparation and linear rheological behavior of polypropylene–montmorillonite nanocomposites. Polym Compos 24:323–331CrossRef
56.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRef
57.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef
58.
Zurück zum Zitat Mullins L, Tobinn R (1954) Theoretical model for the elastic behaviour of filler-reinforced vulcanised rubbers. Proc. 3rd Rubber Technology Conference 397–412 Mullins L, Tobinn R (1954) Theoretical model for the elastic behaviour of filler-reinforced vulcanised rubbers. Proc. 3rd Rubber Technology Conference 397–412
59.
Zurück zum Zitat Asaletha R, Bindu P, Aravind I, Meera AP, Valsaraj SV, Yang W, Thomas S (2008) Stress-relaxation behavior of natural rubber/polystyrene and natural rubber/polystyrene/natural rubber-graft-polystyrene blends. J Appl Polym Sci 108(2):904CrossRef Asaletha R, Bindu P, Aravind I, Meera AP, Valsaraj SV, Yang W, Thomas S (2008) Stress-relaxation behavior of natural rubber/polystyrene and natural rubber/polystyrene/natural rubber-graft-polystyrene blends. J Appl Polym Sci 108(2):904CrossRef
60.
Zurück zum Zitat Meera AP, Said S, Grohens Y, Luyt AS, Thomas S (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48:3410CrossRef Meera AP, Said S, Grohens Y, Luyt AS, Thomas S (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48:3410CrossRef
61.
Zurück zum Zitat Jyotishkumar P, Pionteck J, Hassler R, George SM, Cvelbar U, Thomas S (2011) Studies on stress relaxation and thermomechanical properties of poly(acrylonitrile-butadiene-styrene) modified epoxy–amine systems. Ind Eng Chem Res 50(8):4432–4440CrossRef Jyotishkumar P, Pionteck J, Hassler R, George SM, Cvelbar U, Thomas S (2011) Studies on stress relaxation and thermomechanical properties of poly(acrylonitrile-butadiene-styrene) modified epoxy–amine systems. Ind Eng Chem Res 50(8):4432–4440CrossRef
62.
Zurück zum Zitat Andrews E (1963) Reinforcing of rubber by fillers. Rubber Chem Technol 36:325–336CrossRef Andrews E (1963) Reinforcing of rubber by fillers. Rubber Chem Technol 36:325–336CrossRef
63.
Zurück zum Zitat Chih-Cheng P, Gopfert A, Drechsler M, Abetz V (2005) “Smart” silica–rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16:770CrossRef Chih-Cheng P, Gopfert A, Drechsler M, Abetz V (2005) “Smart” silica–rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16:770CrossRef
64.
Zurück zum Zitat Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18 Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18
65.
Zurück zum Zitat Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997CrossRef Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997CrossRef
66.
Zurück zum Zitat Bhattacharyya S, Sinturel C, Bahloul O, Thomas S, Salvetat J (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46(7):1037CrossRef Bhattacharyya S, Sinturel C, Bahloul O, Thomas S, Salvetat J (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46(7):1037CrossRef
67.
Zurück zum Zitat Nilson LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York Nilson LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York
68.
Zurück zum Zitat Hailin C, Maciej R, Brian FT, Youqing S (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291CrossRef Hailin C, Maciej R, Brian FT, Youqing S (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291CrossRef
69.
Zurück zum Zitat Soney CG, Ninan KN, Sabu T (2001) Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes. Eur Polym J 37:183–191CrossRef Soney CG, Ninan KN, Sabu T (2001) Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes. Eur Polym J 37:183–191CrossRef
Metadaten
Titel
Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites
verfasst von
Kishor Kumar Sadasivuni
Allisson Saiter
Nicolas Gautier
Sabu Thomas
Yves Grohens
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 7/2013
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-2908-y

Weitere Artikel der Ausgabe 7/2013

Colloid and Polymer Science 7/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.