Skip to main content
Erschienen in: Topics in Catalysis 18-20/2013

01.12.2013 | Original Paper

Effect of Molybdenum on the Sulfur-Tolerance of Cerium–Cobalt Mixed Oxide Water–Gas Shift Catalysts

verfasst von: Timothy M. Roberge, Selasi O. Blavo, Chris Holt, Paul H. Matter, John N. Kuhn

Erschienen in: Topics in Catalysis | Ausgabe 18-20/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As traditional sources of energy become depleted, significant research interest has gone into conversion of biomass into renewable fuels. Biomass-derived synthesis gas typically contains concentrations ranging from ~30 to 600 ppm H2S. H2S is a catalyst poison which adversely impacts downstream processing of hydrogen for gas-to-liquid plants and the deactivation of water–gas shift catalysts by sulfur is typical. Novel catalysts are needed to remain active in the presence of sulfur in order to boost efficiency and mitigate costs. Previous studies have shown molybdenum to be active in concentrations of sulfur >300 ppm. Cobalt has been shown to be active as a spinel in concentrations of sulfur <240 ppm. Ceria has received attention as a catalyst due to its oxygen donating properties. In this study, mixed oxide catalysts were synthesized via Pechini’s method into various blends of metal oxide solutions. Activity testing at low steam-to-carbon ratios (1:1) produced near equilibrium conversions at a GHSV of 6,300 h−1 and over a temperature range of 350–400 °C for a Ce–Co mixed oxide even after an 800 ppm sulfur treatment. The addition of molybdenum to the Ce–Co base had little effect on sulfur tolerance, but it did lead to a reduction in selectivity for methanation. Specific surface areas generally increased following the sulfur treatments and X-ray diffraction patterns confirmed that bulk sulfiding did not occur.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mond L, Langer C (1888) British Patent 12608 Mond L, Langer C (1888) British Patent 12608
2.
Zurück zum Zitat Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A 176(2):159–176CrossRef Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A 176(2):159–176CrossRef
3.
Zurück zum Zitat Armor JN (2005) Catalysis and the hydrogen economy. Catal Lett 101(3):131–135CrossRef Armor JN (2005) Catalysis and the hydrogen economy. Catal Lett 101(3):131–135CrossRef
4.
Zurück zum Zitat Ladebeck JR, Wagner JP (2010) Catalyst development for water–gas shift. In: Handbook of fuel cells. Wiley, Chichester Ladebeck JR, Wagner JP (2010) Catalyst development for water–gas shift. In: Handbook of fuel cells. Wiley, Chichester
5.
Zurück zum Zitat Song C (2003) Overview of hydrogen production options for hydrogen energy development, fuel-cell fuel processing and mitigation of CO2 emissions. In Proc. 20th International Pittsburgh Coal Conference, National Science Foundation, Pittsburgh Song C (2003) Overview of hydrogen production options for hydrogen energy development, fuel-cell fuel processing and mitigation of CO2 emissions. In Proc. 20th International Pittsburgh Coal Conference, National Science Foundation, Pittsburgh
6.
Zurück zum Zitat Bartholomew CH, Agrawal PK, Katzer JR (1982) Sulfur Poisoning of Metals. In: Eley DDHP, Paul BW (eds) Advances in catalysis, vol 31. Academic Press, New York, pp 135–242 Bartholomew CH, Agrawal PK, Katzer JR (1982) Sulfur Poisoning of Metals. In: Eley DDHP, Paul BW (eds) Advances in catalysis, vol 31. Academic Press, New York, pp 135–242
7.
Zurück zum Zitat Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energy & Fuels 23(4):1874–1887CrossRef Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energy & Fuels 23(4):1874–1887CrossRef
8.
Zurück zum Zitat Kuhn JN, Lakshminarayanan N, Ozkan US (2008) Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. J Mol Catal A 282:9–21CrossRef Kuhn JN, Lakshminarayanan N, Ozkan US (2008) Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. J Mol Catal A 282:9–21CrossRef
9.
Zurück zum Zitat Yung MM, Kuhn JN (2010) Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy. Lang 26:16589–16594CrossRef Yung MM, Kuhn JN (2010) Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy. Lang 26:16589–16594CrossRef
10.
Zurück zum Zitat Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241CrossRef Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241CrossRef
11.
Zurück zum Zitat Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today 77(1–2):17–49CrossRef Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today 77(1–2):17–49CrossRef
12.
Zurück zum Zitat Petrov K, Srinivasan S (1996) Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production. Int J Hydrogen En 21(3):163–169CrossRef Petrov K, Srinivasan S (1996) Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production. Int J Hydrogen En 21(3):163–169CrossRef
13.
Zurück zum Zitat Yung MM, Cheah S, Magrini-Bair KA, Kuhn JN (2012) Transformation of sulfur species during steam/air regeneration on a Ni biomass conditioning catalyst. ACS Catal 2:1363–1367CrossRef Yung MM, Cheah S, Magrini-Bair KA, Kuhn JN (2012) Transformation of sulfur species during steam/air regeneration on a Ni biomass conditioning catalyst. ACS Catal 2:1363–1367CrossRef
14.
Zurück zum Zitat Newsome DS (1980) The water–gas shift reaction. Catal Rev 21(2):275–318CrossRef Newsome DS (1980) The water–gas shift reaction. Catal Rev 21(2):275–318CrossRef
15.
Zurück zum Zitat Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440CrossRef Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440CrossRef
16.
Zurück zum Zitat Zhang L, Millet J-MM, Ozkan US (2009) Deactivation characteristics of Fe–Al–Cu water–gas shift catalysts in the presence of H2S. J Mol Catal A 309(1–2):63–70CrossRef Zhang L, Millet J-MM, Ozkan US (2009) Deactivation characteristics of Fe–Al–Cu water–gas shift catalysts in the presence of H2S. J Mol Catal A 309(1–2):63–70CrossRef
17.
Zurück zum Zitat Hakkarainen R, Salmi T, Keiski RL (1993) Water–gas shift reaction on a cobalt-molybdenum oxide catalyst. Appl Catal A 99(2):195–215CrossRef Hakkarainen R, Salmi T, Keiski RL (1993) Water–gas shift reaction on a cobalt-molybdenum oxide catalyst. Appl Catal A 99(2):195–215CrossRef
18.
Zurück zum Zitat Ratnasamy P, Sivasanker S (1980) Structural chemistry of Co–Mo–Alumnina Catalysts. Catal Rev 22(3):401–429CrossRef Ratnasamy P, Sivasanker S (1980) Structural chemistry of Co–Mo–Alumnina Catalysts. Catal Rev 22(3):401–429CrossRef
19.
Zurück zum Zitat Cheah S, Carpenter DL, Magrini-Bair KA (2009) Review of mid- to high-temperature sulfur sorbents for desulfurization of biomass- and coal-derived syngas. En & Fuels 23(11):5291–5307CrossRef Cheah S, Carpenter DL, Magrini-Bair KA (2009) Review of mid- to high-temperature sulfur sorbents for desulfurization of biomass- and coal-derived syngas. En & Fuels 23(11):5291–5307CrossRef
20.
Zurück zum Zitat de la Osa AR, De Lucas A, Valverde JL, Romero A, Monteagudo I, Sánchez P (2011) Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed. Int J Hydrogen Energy 36(1):44–51CrossRef de la Osa AR, De Lucas A, Valverde JL, Romero A, Monteagudo I, Sánchez P (2011) Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed. Int J Hydrogen Energy 36(1):44–51CrossRef
21.
Zurück zum Zitat Liu B, Goldbach A, Xu H (2011) Sour water–gas shift reaction over Pt/CeO2 catalysts. Catal Today 171(1):304–311CrossRef Liu B, Goldbach A, Xu H (2011) Sour water–gas shift reaction over Pt/CeO2 catalysts. Catal Today 171(1):304–311CrossRef
22.
Zurück zum Zitat Andreev AA, Kafedjiysky VJ, Edreva-Kardjieva RM (1999) Active forms for water–gas shift reaction on NiMo-sulfide catalysts. Appl Catal A 179(1–2):223–228CrossRef Andreev AA, Kafedjiysky VJ, Edreva-Kardjieva RM (1999) Active forms for water–gas shift reaction on NiMo-sulfide catalysts. Appl Catal A 179(1–2):223–228CrossRef
23.
Zurück zum Zitat Nikolova D, Edreva-Kardjieva R, Grozeva T (2011) Water–gas shift activity of K-promoted (Ni)Mo/γ-Al2O3 systems in sulfur-containing feed. React Kin Mech Catal 103(1):71–86CrossRef Nikolova D, Edreva-Kardjieva R, Grozeva T (2011) Water–gas shift activity of K-promoted (Ni)Mo/γ-Al2O3 systems in sulfur-containing feed. React Kin Mech Catal 103(1):71–86CrossRef
24.
Zurück zum Zitat Wang H, Lian Y, Zhang Q, Li Q, Fang W, Yang Y (2008) MgO–Al2O3 mixed oxides-supported Co–Mo-based catalysts for high-temperature water–gas shift reaction. Catal Lett 126(1):100–105CrossRef Wang H, Lian Y, Zhang Q, Li Q, Fang W, Yang Y (2008) MgO–Al2O3 mixed oxides-supported Co–Mo-based catalysts for high-temperature water–gas shift reaction. Catal Lett 126(1):100–105CrossRef
25.
Zurück zum Zitat Lian Y, Xiao R, Fang W, Yang Y (2011) Potassium-decorated active carbon supported Co–Mo-based catalyst for water–gas shift reaction. J Nat Gas Chem 20(1):77–83CrossRef Lian Y, Xiao R, Fang W, Yang Y (2011) Potassium-decorated active carbon supported Co–Mo-based catalyst for water–gas shift reaction. J Nat Gas Chem 20(1):77–83CrossRef
26.
Zurück zum Zitat Copperthwaite RG, Gottschalk FM, Sangiorgio T, Hutchings GJ (1990) Cobalt chromium oxide: a novel sulphur tolerant water–gas shift catalyst. Appl Catal 63(1):L11–L16CrossRef Copperthwaite RG, Gottschalk FM, Sangiorgio T, Hutchings GJ (1990) Cobalt chromium oxide: a novel sulphur tolerant water–gas shift catalyst. Appl Catal 63(1):L11–L16CrossRef
27.
Zurück zum Zitat Mellor JR, Copperthwaite RG, Coville NJ (1997) The selective influence of sulfur on the performance of novel cobalt-based water–gas shift catalysts. Appl Catal A 164(1–2):69–79CrossRef Mellor JR, Copperthwaite RG, Coville NJ (1997) The selective influence of sulfur on the performance of novel cobalt-based water–gas shift catalysts. Appl Catal A 164(1–2):69–79CrossRef
28.
Zurück zum Zitat Hou P, Meeker D, Wise H (1983) Kinetic studies with a sulfur-tolerant water gas shift catalyst. J Catal 80(2):280–285CrossRef Hou P, Meeker D, Wise H (1983) Kinetic studies with a sulfur-tolerant water gas shift catalyst. J Catal 80(2):280–285CrossRef
29.
Zurück zum Zitat Hutchings GJ, Copperthwaitet RG, Gottschalk FM, Hunter R, Mellor J, Orchard SW, Sangiorgio T (1992) A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water–gas shift reaction. J Catal 137(2):408–422CrossRef Hutchings GJ, Copperthwaitet RG, Gottschalk FM, Hunter R, Mellor J, Orchard SW, Sangiorgio T (1992) A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water–gas shift reaction. J Catal 137(2):408–422CrossRef
30.
Zurück zum Zitat Laniecki M, Zmierczak W (1991) Deactivation of sulfur tolerant water–gas shift catalysts based on Ni–Mo–Y–zeolites. In: Calvin HB, John BB (eds) Studies in surface science and catalysis, vol 68. Elsevier, Amsterdam, pp 799–802 Laniecki M, Zmierczak W (1991) Deactivation of sulfur tolerant water–gas shift catalysts based on Ni–Mo–Y–zeolites. In: Calvin HB, John BB (eds) Studies in surface science and catalysis, vol 68. Elsevier, Amsterdam, pp 799–802
31.
Zurück zum Zitat Yates IC, Satterfield CN (1991) Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy & Fuels 5(1):168–173CrossRef Yates IC, Satterfield CN (1991) Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy & Fuels 5(1):168–173CrossRef
32.
Zurück zum Zitat Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318CrossRef Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318CrossRef
33.
Zurück zum Zitat Gottschalk FM, Hutchings GJ (1989) Manganese oxide water–gas shift catalysts initial optimization studies. Appl Catal 51(1):127–139CrossRef Gottschalk FM, Hutchings GJ (1989) Manganese oxide water–gas shift catalysts initial optimization studies. Appl Catal 51(1):127–139CrossRef
34.
Zurück zum Zitat Fornasari G, Gusi S, Trifiro F, Vaccari A (1987) Cobalt mixed spinels as catalysts for the synthesis of hydrocarbons. Ind Eng Chem Res 26(8):1500–1505CrossRef Fornasari G, Gusi S, Trifiro F, Vaccari A (1987) Cobalt mixed spinels as catalysts for the synthesis of hydrocarbons. Ind Eng Chem Res 26(8):1500–1505CrossRef
35.
Zurück zum Zitat Lausche AC, Schaidle JA, Thompson LT (2011) Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming. Appl Catal A 401(1–2):29–36CrossRef Lausche AC, Schaidle JA, Thompson LT (2011) Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming. Appl Catal A 401(1–2):29–36CrossRef
36.
Zurück zum Zitat Laniecki M, Ignacik M (2006) Water–gas shift reaction over sulfided molybdenum catalysts supported on TiO2–ZrO2 mixed oxides support characterization and catalytic activity. Catal Today 116(3):400–407CrossRef Laniecki M, Ignacik M (2006) Water–gas shift reaction over sulfided molybdenum catalysts supported on TiO2–ZrO2 mixed oxides support characterization and catalytic activity. Catal Today 116(3):400–407CrossRef
37.
Zurück zum Zitat Valsamakis I, Flytzani-Stephanopoulos M (2011) Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water–gas shift reaction. Appl Catal B 106(1–2):255–263 Valsamakis I, Flytzani-Stephanopoulos M (2011) Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water–gas shift reaction. Appl Catal B 106(1–2):255–263
38.
Zurück zum Zitat Xue E, O’Keeffe M, Ross JRH (2000) A study of Pt/ZrO2 catalysts for water–gas shift reaction in the presence of H2S. In: Avelino Corma FVMSM, José Luis GF (eds) Studies in surface science and catalysis, vol 130. Elsevier, Amsterdam, pp 3813–3818 Xue E, O’Keeffe M, Ross JRH (2000) A study of Pt/ZrO2 catalysts for water–gas shift reaction in the presence of H2S. In: Avelino Corma FVMSM, José Luis GF (eds) Studies in surface science and catalysis, vol 130. Elsevier, Amsterdam, pp 3813–3818
39.
Zurück zum Zitat Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water–gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B 15(1–2):107–114CrossRef Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water–gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B 15(1–2):107–114CrossRef
40.
Zurück zum Zitat Gorte RJ (2010) Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56(5):1126–1135 Gorte RJ (2010) Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56(5):1126–1135
41.
Zurück zum Zitat Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Sol Stat Ion 129(1–4):63–94CrossRef Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Sol Stat Ion 129(1–4):63–94CrossRef
42.
Zurück zum Zitat Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520CrossRef Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520CrossRef
43.
Zurück zum Zitat Tabakova T, Boccuzzi F, Manzoli M, Andreeva D (2003) FTIR study of low-temperature water–gas shift reaction on gold/ceria catalyst. Appl Catal A 252(2):385–397CrossRef Tabakova T, Boccuzzi F, Manzoli M, Andreeva D (2003) FTIR study of low-temperature water–gas shift reaction on gold/ceria catalyst. Appl Catal A 252(2):385–397CrossRef
44.
Zurück zum Zitat Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Low-temperature water–gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B 27(3):179–191CrossRef Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Low-temperature water–gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B 27(3):179–191CrossRef
45.
Zurück zum Zitat Jacobs G, Patterson PM, Williams L, Chenu E, Sparks D, Thomas G, Davis BH (2004) Water–gas shift: in situ spectroscopic studies of noble metal promoted ceria catalysts for CO removal in fuel cell reformers and mechanistic implications. Appl Catal A 262(2):177–187CrossRef Jacobs G, Patterson PM, Williams L, Chenu E, Sparks D, Thomas G, Davis BH (2004) Water–gas shift: in situ spectroscopic studies of noble metal promoted ceria catalysts for CO removal in fuel cell reformers and mechanistic implications. Appl Catal A 262(2):177–187CrossRef
46.
Zurück zum Zitat Reddy GK, Boolchand P, Smirniotis PG (2011) Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios—XPS and Mössbauer spectroscopic study. J Catal 282(2):258–269CrossRef Reddy GK, Boolchand P, Smirniotis PG (2011) Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios—XPS and Mössbauer spectroscopic study. J Catal 282(2):258–269CrossRef
47.
Zurück zum Zitat Moe JM (1962) Design of water–gas shift reactors. Chem Eng Prog 58:33–36 Moe JM (1962) Design of water–gas shift reactors. Chem Eng Prog 58:33–36
48.
Zurück zum Zitat Carbo MC, Boon J, Jansen D, van Dijk HAJ, Dijkstra JW, van den Brink RW, Verkooijen AHM (2009) Steam demand reduction of water–gas shift reaction in IGCC power plants with pre-combustion CO2 capture. Int J Green Gas Control 3(6):712–719CrossRef Carbo MC, Boon J, Jansen D, van Dijk HAJ, Dijkstra JW, van den Brink RW, Verkooijen AHM (2009) Steam demand reduction of water–gas shift reaction in IGCC power plants with pre-combustion CO2 capture. Int J Green Gas Control 3(6):712–719CrossRef
49.
Zurück zum Zitat Liu B, Zong Q, Edwards PP, Zou F, Du X, Jiang Z, Xiao T, AlMegren H (2012) Effect of titania addition on the performance of CoMo/Al2O3 sour water gas shift catalysts under lean steam to gas ratio conditions. Ind Eng Chem Res 51(36):11674–11680CrossRef Liu B, Zong Q, Edwards PP, Zou F, Du X, Jiang Z, Xiao T, AlMegren H (2012) Effect of titania addition on the performance of CoMo/Al2O3 sour water gas shift catalysts under lean steam to gas ratio conditions. Ind Eng Chem Res 51(36):11674–11680CrossRef
50.
Zurück zum Zitat Prins R, De Beer VHJ, Somorjai GA (1989) Structure and function of the catalyst and the promoter in Co–Mo hydrodesulfurization catalysts. Catal Rev 31(1–2):1–41CrossRef Prins R, De Beer VHJ, Somorjai GA (1989) Structure and function of the catalyst and the promoter in Co–Mo hydrodesulfurization catalysts. Catal Rev 31(1–2):1–41CrossRef
51.
52.
Zurück zum Zitat Barroso MN, Gomez MF, Gamboa JA, Arrúa LA, Abello MC (2006) Preparation and characterization of CuZnAl catalysts by citrate gel process. J Phys Chem Solid 67(7):1583–1589CrossRef Barroso MN, Gomez MF, Gamboa JA, Arrúa LA, Abello MC (2006) Preparation and characterization of CuZnAl catalysts by citrate gel process. J Phys Chem Solid 67(7):1583–1589CrossRef
53.
Zurück zum Zitat Caldwell TE, Abdelrehim IM, Land DP (1996) Thiophene decomposition on Pd(111) forms S and C4 species: a laser-induced thermal desorption/Fourier transform mass spectrometry study. Surf Sci 367(1):L26–L31CrossRef Caldwell TE, Abdelrehim IM, Land DP (1996) Thiophene decomposition on Pd(111) forms S and C4 species: a laser-induced thermal desorption/Fourier transform mass spectrometry study. Surf Sci 367(1):L26–L31CrossRef
54.
Zurück zum Zitat Simon LJ, Rep M, van Ommen JG, Lercher JA (2001) Thiophene decomposition on Pt-supported zeolites: a TPD study. Appl Catal A 218(1–2):161–170CrossRef Simon LJ, Rep M, van Ommen JG, Lercher JA (2001) Thiophene decomposition on Pt-supported zeolites: a TPD study. Appl Catal A 218(1–2):161–170CrossRef
55.
Zurück zum Zitat Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631CrossRef Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82(6):607–631CrossRef
56.
Zurück zum Zitat Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted–Evans–polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224(1):206–217CrossRef Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted–Evans–polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224(1):206–217CrossRef
57.
Zurück zum Zitat Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef
58.
Zurück zum Zitat Saito M, Anderson RB (1980) The activity of several molybdenum compounds for the methanation of CO. J Catal 63(2):438–446CrossRef Saito M, Anderson RB (1980) The activity of several molybdenum compounds for the methanation of CO. J Catal 63(2):438–446CrossRef
Metadaten
Titel
Effect of Molybdenum on the Sulfur-Tolerance of Cerium–Cobalt Mixed Oxide Water–Gas Shift Catalysts
verfasst von
Timothy M. Roberge
Selasi O. Blavo
Chris Holt
Paul H. Matter
John N. Kuhn
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 18-20/2013
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0125-z

Weitere Artikel der Ausgabe 18-20/2013

Topics in Catalysis 18-20/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.