Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2020

21.05.2020

Effect of N2/TMS Gas Ratio on Mechanical and Erosion Performances of Ti-Si-C-N Nanocomposite Coatings

verfasst von: A. M. Abd El-Rahman, Ronghua Wei, M. Raaif, F. M. El-Hossary, M. Hammad Fawey, M. Abo El-kassem

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To optimize the tribo-mechanical performance of thick Ti-Si-CN nanocomposite coatings for a wide range of harsh industrial applications, reactive gases of nitrogen and trimethylsilane were employed with specific flow rates of PEMS process. Plasma-enhanced magnetron sputtering (PEMS) was employed for depositing thick Ti-Si-C-N nanocomposite (22-27 µm) on Ti-6Al-4V substrates at relatively high deposition rate up to 4.5 µm/h. Controlling the nitrogen partial pressure ratio PN2/(PN2 + PTMS) from 0.29 to 0.69 resulted in controlling the chemical and physical properties of the coatings. The XRD results demonstrated that the crystallinity of the nanocomposite structure increased with the increase in nitrogen pressure ratio. The coating hardness, erosion resistance, sliding wear resistance and corrosion resistance were augmented with increasing the nitrogen content in the plasma atmosphere. The results displayed that the sliding wear resistance of Ti-Si-C-N coatings increased by approximately three orders of magnitude comparing with the uncoated Ti-6Al-4V substrate. At low nitrogen content, low coefficient of friction (0.13-0.15) was achieved. Furthermore, the coating prepared at high nitrogen content reflected greater values of ratios H/E* and H3/E*2 that correlated well with the coating erosion resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Raaif, F.M. El-Hossary, N.Z. Negm, S.M. Khalil, and P. Schaaf, Surface Treatment of Ti-6Al-4V Alloy by RF Plasma Nitriding, J. Phys.: Condens. Matter, 2007, 19, p 396003 M. Raaif, F.M. El-Hossary, N.Z. Negm, S.M. Khalil, and P. Schaaf, Surface Treatment of Ti-6Al-4V Alloy by RF Plasma Nitriding, J. Phys.: Condens. Matter, 2007, 19, p 396003
2.
Zurück zum Zitat S. Kumari, S.K. Sharma, and S.K. Mishra, Effect of Deposition Pressure, Nitrogen Content and Substrate Temperature on Optical and Mechanical Behavior of Nanocomposite Al-Si-N Hard Coatings for Solar Thermal Applications, J. Mater. Eng. Perform., 2018, 27, p 6729–6736CrossRef S. Kumari, S.K. Sharma, and S.K. Mishra, Effect of Deposition Pressure, Nitrogen Content and Substrate Temperature on Optical and Mechanical Behavior of Nanocomposite Al-Si-N Hard Coatings for Solar Thermal Applications, J. Mater. Eng. Perform., 2018, 27, p 6729–6736CrossRef
3.
Zurück zum Zitat B. Warcholinski, T.A. Kuznetsova, A. Gilewicz et al., Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages, J. Mater. Eng. Perform., 2018, 27, p 3940–3950CrossRef B. Warcholinski, T.A. Kuznetsova, A. Gilewicz et al., Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages, J. Mater. Eng. Perform., 2018, 27, p 3940–3950CrossRef
4.
Zurück zum Zitat A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, and L. Hultman, Thermal Stability, Microstructure and Mechanical Properties of Ti1-xZrxN Thin Films, Thin Solid Films, 2008, 516, p 6421–6431CrossRef A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, and L. Hultman, Thermal Stability, Microstructure and Mechanical Properties of Ti1-xZrxN Thin Films, Thin Solid Films, 2008, 516, p 6421–6431CrossRef
5.
Zurück zum Zitat C.H. Zhang, Z.J. Liu, K.Y. Li, Y.G. Shen, and J.B. Luo, Microstructure, Surface Morphology, and Mechanical Properties of Nanocrystalline TiN/Amorphous Si3N4 Composite Films Synthesized by Ion Beam Assisted Deposition, J. Appl. Phys., 2004, 95, p 1460–1467CrossRef C.H. Zhang, Z.J. Liu, K.Y. Li, Y.G. Shen, and J.B. Luo, Microstructure, Surface Morphology, and Mechanical Properties of Nanocrystalline TiN/Amorphous Si3N4 Composite Films Synthesized by Ion Beam Assisted Deposition, J. Appl. Phys., 2004, 95, p 1460–1467CrossRef
7.
Zurück zum Zitat A. Niederhofer, P. Nesladek, H.-D. Männling et al., Structural Properties, Internal Stress and Thermal Stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1 − yAlySix)N Superhard Nanocomposite Coatings Reaching the Hardness of Diamond, Surf. Coat. Technol., 1999, 120–121, p 173–178CrossRef A. Niederhofer, P. Nesladek, H.-D. Männling et al., Structural Properties, Internal Stress and Thermal Stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1 − yAlySix)N Superhard Nanocomposite Coatings Reaching the Hardness of Diamond, Surf. Coat. Technol., 1999, 120–121, p 173–178CrossRef
8.
Zurück zum Zitat S. Veprek, M. Haussmann, S. Reiprich et al., Novel Thermodynamically Stable and Oxidation Resistant Superhard Coating Materials, Surf. Coat. Technol., 1996, 86–87, p 394–401CrossRef S. Veprek, M. Haussmann, S. Reiprich et al., Novel Thermodynamically Stable and Oxidation Resistant Superhard Coating Materials, Surf. Coat. Technol., 1996, 86–87, p 394–401CrossRef
9.
Zurück zum Zitat F. Vaz, L. Rebouta, P. Goudeau, J. Pacaus, H. Garem, J.P. Riviere, A. Cavaleir, and E. Alves, Characterisation of Ti1-xSixNy Nanocomposite Films, Surf. Coat. Technol., 2000, 133–134, p 307–313CrossRef F. Vaz, L. Rebouta, P. Goudeau, J. Pacaus, H. Garem, J.P. Riviere, A. Cavaleir, and E. Alves, Characterisation of Ti1-xSixNy Nanocomposite Films, Surf. Coat. Technol., 2000, 133–134, p 307–313CrossRef
10.
Zurück zum Zitat S.L. Ma, D.Y. Ma, Y. Guo, B. Xu, G.Z. Wu, and K.W. Xu, Synthesis and Characterization of Super Hard, Self-lubricating Ti-Si-C-N Nanocomposite Coatings, Acta Mater., 2007, 55, p 6350–6355CrossRef S.L. Ma, D.Y. Ma, Y. Guo, B. Xu, G.Z. Wu, and K.W. Xu, Synthesis and Characterization of Super Hard, Self-lubricating Ti-Si-C-N Nanocomposite Coatings, Acta Mater., 2007, 55, p 6350–6355CrossRef
11.
Zurück zum Zitat J.H. Jeon, S.R. Choi, W.S. Chung, and K.H. Kim, Synthesis and Characterization of Quaternary Ti-Si-C-N Coatings Prepared by a Hybrid Deposition Technique, Surf. Coat. Technol., 2004, 188–189, p 415–419CrossRef J.H. Jeon, S.R. Choi, W.S. Chung, and K.H. Kim, Synthesis and Characterization of Quaternary Ti-Si-C-N Coatings Prepared by a Hybrid Deposition Technique, Surf. Coat. Technol., 2004, 188–189, p 415–419CrossRef
12.
Zurück zum Zitat S. Abraham, E.Y. Choi, N. Kang, and K.H. Kim, Microstructure and Mechanical Properties of Ti-Si-C-N Films Synthesized by Plasma-Enhanced Chemical Vapor Deposition, Surf. Coat. Technol., 2007, 202, p 915–919CrossRef S. Abraham, E.Y. Choi, N. Kang, and K.H. Kim, Microstructure and Mechanical Properties of Ti-Si-C-N Films Synthesized by Plasma-Enhanced Chemical Vapor Deposition, Surf. Coat. Technol., 2007, 202, p 915–919CrossRef
13.
Zurück zum Zitat C.-L. Chang and T.-J. Hsieh, Effect of C2H2 Gas Flow Rate on Synthesis and Characteristics of Ti-Si-C-N Coating by Cathodic Arc Plasma Evaporation, J. Mater. Proc. Technol., 2009, 209, p 5521–5526CrossRef C.-L. Chang and T.-J. Hsieh, Effect of C2H2 Gas Flow Rate on Synthesis and Characteristics of Ti-Si-C-N Coating by Cathodic Arc Plasma Evaporation, J. Mater. Proc. Technol., 2009, 209, p 5521–5526CrossRef
14.
Zurück zum Zitat A.A. Onoprienko, V.I. Ivashchenko, S.N. Dub, OYu Khyzhun, and I.I. Timofeeva, Microstructure and Mechanical Properties of Hard Ti-Si-C-N Films Deposited by DC Magnetron Sputtering of Multicomponent Ti/C/Si Target, Surf. Coat. Technol., 2011, 205, p 5068–5072CrossRef A.A. Onoprienko, V.I. Ivashchenko, S.N. Dub, OYu Khyzhun, and I.I. Timofeeva, Microstructure and Mechanical Properties of Hard Ti-Si-C-N Films Deposited by DC Magnetron Sputtering of Multicomponent Ti/C/Si Target, Surf. Coat. Technol., 2011, 205, p 5068–5072CrossRef
15.
Zurück zum Zitat R. Wei, Plasma Enhanced Magnetron Sputter Deposition of Ti-Si-C-N Based Nanocomposite Coatings, Surf. Coat. Technol., 2008, 203, p 538–544CrossRef R. Wei, Plasma Enhanced Magnetron Sputter Deposition of Ti-Si-C-N Based Nanocomposite Coatings, Surf. Coat. Technol., 2008, 203, p 538–544CrossRef
16.
Zurück zum Zitat R. Wei, E. Langa, C. Rincon, and J. Arps, Deposition of Thick Nitrides and Carbonitrides for Sand Erosion Protection, Surf. Coat. Technol., 2006, 201, p 4453–4459CrossRef R. Wei, E. Langa, C. Rincon, and J. Arps, Deposition of Thick Nitrides and Carbonitrides for Sand Erosion Protection, Surf. Coat. Technol., 2006, 201, p 4453–4459CrossRef
17.
Zurück zum Zitat C.P. Qin, Y.G. Zheng, and R. Wei, Cavitation Erosion Behavior of Nanocomposite Ti-Si-C-N and Ti/Ti-Si-C-N Coatings Deposited on 2Cr13 Stainless Steel Using a Plasma Enhanced Magnetron Sputtering Process, Surf. Coat. Technol., 2010, 204, p 3530–3538CrossRef C.P. Qin, Y.G. Zheng, and R. Wei, Cavitation Erosion Behavior of Nanocomposite Ti-Si-C-N and Ti/Ti-Si-C-N Coatings Deposited on 2Cr13 Stainless Steel Using a Plasma Enhanced Magnetron Sputtering Process, Surf. Coat. Technol., 2010, 204, p 3530–3538CrossRef
18.
Zurück zum Zitat D. Ma, S. Ma, H. Dong, K. Xu, and T. Bell, Microstructure and Tribological Behaviour of Super-Hard Ti-Si-C-N Nanocomposite Coatings Deposited by Plasma Enhanced Chemical Vapour Deposition, Thin Solid Films, 2006, 496, p 438–444CrossRef D. Ma, S. Ma, H. Dong, K. Xu, and T. Bell, Microstructure and Tribological Behaviour of Super-Hard Ti-Si-C-N Nanocomposite Coatings Deposited by Plasma Enhanced Chemical Vapour Deposition, Thin Solid Films, 2006, 496, p 438–444CrossRef
19.
Zurück zum Zitat Y. Wang, J. Li, C. Dang, Y. Wang, and Y. Zhu, Influence of Carbon Contents on the Structure and Tribocorrosion Properties of TiSiCN Coatings on Ti6Al4V, Tribol. Int., 2017, 109, p 285–296CrossRef Y. Wang, J. Li, C. Dang, Y. Wang, and Y. Zhu, Influence of Carbon Contents on the Structure and Tribocorrosion Properties of TiSiCN Coatings on Ti6Al4V, Tribol. Int., 2017, 109, p 285–296CrossRef
20.
Zurück zum Zitat A.M.A. El-Rahman and R.H. Wei, Effect of Ion Bombardment on Structural, Mechanical, Erosion and Corrosion Properties of Ti-Si-C-N Nanocomposite Coatings, Surf. Coat. Technol., 2014, 258, p 320–328CrossRef A.M.A. El-Rahman and R.H. Wei, Effect of Ion Bombardment on Structural, Mechanical, Erosion and Corrosion Properties of Ti-Si-C-N Nanocomposite Coatings, Surf. Coat. Technol., 2014, 258, p 320–328CrossRef
21.
Zurück zum Zitat J. Lin, R. Wei, D.C. Bitsis, and P.M. Lee, Development and Evaluation of Low Friction TiSiCN Nanocomposite Coatings for Piston Ring Applications, Surf. Coat. Technol., 2016, 298, p 121–131CrossRef J. Lin, R. Wei, D.C. Bitsis, and P.M. Lee, Development and Evaluation of Low Friction TiSiCN Nanocomposite Coatings for Piston Ring Applications, Surf. Coat. Technol., 2016, 298, p 121–131CrossRef
22.
Zurück zum Zitat S. Choi, I. Park, S. Kim, and K. Kim, Effects of Bias Voltage and Temperature on Mechanical Properties of Ti-Si-N Coatings Deposited by a Hybrid System of Arc Ion Plating and Sputtering Techniques, Thin Solid Films, 2004, 447–448, p 371–376CrossRef S. Choi, I. Park, S. Kim, and K. Kim, Effects of Bias Voltage and Temperature on Mechanical Properties of Ti-Si-N Coatings Deposited by a Hybrid System of Arc Ion Plating and Sputtering Techniques, Thin Solid Films, 2004, 447–448, p 371–376CrossRef
23.
Zurück zum Zitat P. Zhang, Z. Cai, and W. Xiong, Influence of Si Content and Growth Condition on the Microstructure and Mechanical Properties of Ti-Si-N Nanocomposite films, Surf. Coat. Technol., 2007, 201, p 6819–6823CrossRef P. Zhang, Z. Cai, and W. Xiong, Influence of Si Content and Growth Condition on the Microstructure and Mechanical Properties of Ti-Si-N Nanocomposite films, Surf. Coat. Technol., 2007, 201, p 6819–6823CrossRef
24.
Zurück zum Zitat F.M. El-Hossary, A.M. Abd El-Rahman, M. Raaif, Q. Shuxin, J. Zhao, F.M. Manfred, and M. Abo El-Kassem, Effect of DC-Pulsed Magnetron Sputtering Power on Structural, Tribological and Biocompatibility of Ti-Zr-N thin film, Appl. Phys. A, 2018, 124, p 42CrossRef F.M. El-Hossary, A.M. Abd El-Rahman, M. Raaif, Q. Shuxin, J. Zhao, F.M. Manfred, and M. Abo El-Kassem, Effect of DC-Pulsed Magnetron Sputtering Power on Structural, Tribological and Biocompatibility of Ti-Zr-N thin film, Appl. Phys. A, 2018, 124, p 42CrossRef
25.
Zurück zum Zitat D. Depla and R. De Gryse, Target Poisoning During Reactive Magnetron Sputtering: Part I: the Influence of Ion Implantation, Surf. Coat. Technol., 2004, 183, p 184–189CrossRef D. Depla and R. De Gryse, Target Poisoning During Reactive Magnetron Sputtering: Part I: the Influence of Ion Implantation, Surf. Coat. Technol., 2004, 183, p 184–189CrossRef
26.
Zurück zum Zitat D. Depla and R. De Gryse, Target Poisoning During Reactive Magnetron Sputtering: Part II: The Influence of Chemisorption and Gettering, Surf. Coat. Technol., 2004, 183, p 190–195CrossRef D. Depla and R. De Gryse, Target Poisoning During Reactive Magnetron Sputtering: Part II: The Influence of Chemisorption and Gettering, Surf. Coat. Technol., 2004, 183, p 190–195CrossRef
27.
Zurück zum Zitat M. Raaif, Constructing and Characterizing TiAlN Thin Film by DC. Pulsed Magnetron Sputtering at Different Nitrogen/Argon Gas Ratios, J. Adv. Phys., 2018, 14, p 5638–5652CrossRef M. Raaif, Constructing and Characterizing TiAlN Thin Film by DC. Pulsed Magnetron Sputtering at Different Nitrogen/Argon Gas Ratios, J. Adv. Phys., 2018, 14, p 5638–5652CrossRef
28.
Zurück zum Zitat O.A. Fouad, A.K. Rumaiz, and S.I. Shah, Reactive Sputtering of Titanium in Ar/CH4 Gas Mixture: Target Poisoning and Film Characteristics, Thin Solid Films, 2009, 517, p 5689–5694CrossRef O.A. Fouad, A.K. Rumaiz, and S.I. Shah, Reactive Sputtering of Titanium in Ar/CH4 Gas Mixture: Target Poisoning and Film Characteristics, Thin Solid Films, 2009, 517, p 5689–5694CrossRef
29.
Zurück zum Zitat J. Musil, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. Chapter 10, Nanostructured Coatings, A. Cavaleiro and J.T.M. De Hosson, Ed., Kluwer Academic/Plenum Publishers, New York, 2006, p 407–463CrossRef J. Musil, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering. Chapter 10, Nanostructured Coatings, A. Cavaleiro and J.T.M. De Hosson, Ed., Kluwer Academic/Plenum Publishers, New York, 2006, p 407–463CrossRef
30.
Zurück zum Zitat I. Petrov, F. Adibi, J.E. Greene, L. Hultman, and J.E. Sundgren, Average Energy Deposited Per Atom: A Universal Parameter for Describing Ion-Assisted Film Growth?, Appl. Phys. Lett., 1993, 63, p 36–38CrossRef I. Petrov, F. Adibi, J.E. Greene, L. Hultman, and J.E. Sundgren, Average Energy Deposited Per Atom: A Universal Parameter for Describing Ion-Assisted Film Growth?, Appl. Phys. Lett., 1993, 63, p 36–38CrossRef
31.
Zurück zum Zitat M. Mausbach, Microstructure of Copper Films Condensed from a Copper Plasma with Ion Energies Between 2 and 150 eV, Surf. Coat. Technol., 1995, 74–75, p 264–272CrossRef M. Mausbach, Microstructure of Copper Films Condensed from a Copper Plasma with Ion Energies Between 2 and 150 eV, Surf. Coat. Technol., 1995, 74–75, p 264–272CrossRef
33.
Zurück zum Zitat R. Messier, A.P. Giri, and R.A. Roy, Revised Structure Zone Model for Thin Film Physical Structure, J. Vac. Sci. Technol. A, 1984, 2, p 500–503CrossRef R. Messier, A.P. Giri, and R.A. Roy, Revised Structure Zone Model for Thin Film Physical Structure, J. Vac. Sci. Technol. A, 1984, 2, p 500–503CrossRef
34.
Zurück zum Zitat A. Anders, A Structure Zone Diagram Including Plasma-Based Deposition and Ion Etching, Thin Solid Films, 2010, 518, p 4087–4090CrossRef A. Anders, A Structure Zone Diagram Including Plasma-Based Deposition and Ion Etching, Thin Solid Films, 2010, 518, p 4087–4090CrossRef
35.
Zurück zum Zitat R. Gago, I. Jimenez, and J.M. Albella, Boron–Carbon–Nitrogen Compounds Grown by Ion Beam Assisted Evaporation, Thin Solid Films, 2000, 373, p 277–281CrossRef R. Gago, I. Jimenez, and J.M. Albella, Boron–Carbon–Nitrogen Compounds Grown by Ion Beam Assisted Evaporation, Thin Solid Films, 2000, 373, p 277–281CrossRef
36.
Zurück zum Zitat W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, Evaluation of PVD Nitride Coatings, Using Impact, Scratch and Rockwell-C Adhesion Tests, Thin Solid Films, 1995, 270, p 431–438CrossRef W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, Evaluation of PVD Nitride Coatings, Using Impact, Scratch and Rockwell-C Adhesion Tests, Thin Solid Films, 1995, 270, p 431–438CrossRef
37.
Zurück zum Zitat N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144, p 481–485CrossRef N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144, p 481–485CrossRef
38.
Zurück zum Zitat N. Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao, and X.Y. Hou, Superhard Nanocomposite Ti-Al-Si-N Films Deposited by Reactive Unbalanced Magnetron Sputtering, Mater. Sci. Eng. B, 2006, 135, p 1–9CrossRef N. Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao, and X.Y. Hou, Superhard Nanocomposite Ti-Al-Si-N Films Deposited by Reactive Unbalanced Magnetron Sputtering, Mater. Sci. Eng. B, 2006, 135, p 1–9CrossRef
39.
Zurück zum Zitat H.C. Barshilia, M. Surya Prakash, A. Poojari, and K.S. Rajam, Corrosion Behavior of Nanolayered TiN/NbN Multilayer Coatings Prepared by Reactive Direct Current Magnetron Sputtering Process, Thin Solid Films, 2004, 460, p 133–142CrossRef H.C. Barshilia, M. Surya Prakash, A. Poojari, and K.S. Rajam, Corrosion Behavior of Nanolayered TiN/NbN Multilayer Coatings Prepared by Reactive Direct Current Magnetron Sputtering Process, Thin Solid Films, 2004, 460, p 133–142CrossRef
40.
Zurück zum Zitat W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583CrossRef W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583CrossRef
41.
Zurück zum Zitat A.C. Fischer-Cripps, Critical Review of Analysis and Interpretation of Nanoindentation Test Data, Surf. Coat. Technol., 2006, 200, p 4153–4165CrossRef A.C. Fischer-Cripps, Critical Review of Analysis and Interpretation of Nanoindentation Test Data, Surf. Coat. Technol., 2006, 200, p 4153–4165CrossRef
42.
Zurück zum Zitat J. Halling, Surface Films in Tribology, Tribologia, 1982, 1, p 15–23 J. Halling, Surface Films in Tribology, Tribologia, 1982, 1, p 15–23
43.
Zurück zum Zitat A. Matthews, Proceedings of the 1st Conference on Materials Engineering, Institution of Metallurgists The University of Leeds, UK, 1984 ((ISBN: 0-901-46224-1, 175)) A. Matthews, Proceedings of the 1st Conference on Materials Engineering, Institution of Metallurgists The University of Leeds, UK, 1984 ((ISBN: 0-901-46224-1, 175))
44.
Zurück zum Zitat C. Rebholz, A. Leyland, J.M. Schneider, A.A. Voevodin, and A. Matthews, Structure, Hardness and Mechanical Properties of Magnetron-Sputtered Titanium-Aluminium Boride Films, Surf. Coat. Technol., 1999, 120–121, p 412–417CrossRef C. Rebholz, A. Leyland, J.M. Schneider, A.A. Voevodin, and A. Matthews, Structure, Hardness and Mechanical Properties of Magnetron-Sputtered Titanium-Aluminium Boride Films, Surf. Coat. Technol., 1999, 120–121, p 412–417CrossRef
45.
Zurück zum Zitat J. Musil and M. Jirout, Toughness of Hard Nanostructured Ceramic Thin Films, Surf. Coat. Technol., 2007, 201, p 5148–5152CrossRef J. Musil and M. Jirout, Toughness of Hard Nanostructured Ceramic Thin Films, Surf. Coat. Technol., 2007, 201, p 5148–5152CrossRef
46.
Zurück zum Zitat J. Musil, Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness, Surf. Coat. Technol., 2012, 207, p 50–65CrossRef J. Musil, Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness, Surf. Coat. Technol., 2012, 207, p 50–65CrossRef
47.
Zurück zum Zitat A.K. Suri, R. Nimmagadda, and R.F. Bunshah, Synthesis of Titanium Nitrides by Activated Reactive Evaporation, Thin Solid Films, 1980, 72, p 529CrossRef A.K. Suri, R. Nimmagadda, and R.F. Bunshah, Synthesis of Titanium Nitrides by Activated Reactive Evaporation, Thin Solid Films, 1980, 72, p 529CrossRef
48.
Zurück zum Zitat S. PalDeys and S.C. Deevi, Single Layer and Multilayer Wear Resistant Coatings of (Ti,Al)N: A Review, Mater. Sci. Eng. A, 2003, 342, p 58–79CrossRef S. PalDeys and S.C. Deevi, Single Layer and Multilayer Wear Resistant Coatings of (Ti,Al)N: A Review, Mater. Sci. Eng. A, 2003, 342, p 58–79CrossRef
49.
Zurück zum Zitat B. Bhushan, Modern Tribology Handbook, CRC Press, Boca Raton, 2001, p 49–80 B. Bhushan, Modern Tribology Handbook, CRC Press, Boca Raton, 2001, p 49–80
50.
Zurück zum Zitat Y. Tanno and A. Azushima, Effect of Counter Materials on Coefficients of Friction of TiN Coatings with Preferred Grain Orientations, Wear, 2009, 266, p 1178–1184CrossRef Y. Tanno and A. Azushima, Effect of Counter Materials on Coefficients of Friction of TiN Coatings with Preferred Grain Orientations, Wear, 2009, 266, p 1178–1184CrossRef
51.
Zurück zum Zitat H.S. Hong, The Role of Atmospheres and Lubricants in the Oxidational Wear of Metals, Tribol. Int., 2002, 35, p 725–729CrossRef H.S. Hong, The Role of Atmospheres and Lubricants in the Oxidational Wear of Metals, Tribol. Int., 2002, 35, p 725–729CrossRef
52.
Zurück zum Zitat V. Podgursky, R. Nisumaa, E. Adoberg, A. Surzhenkov, A. Sivitski, and P. Kulu, Comparative Study of Surface Roughness and Tribological Behavior During Running-in Period of Hard Coatings Deposited by Lateral Rotating Cathode Arc, Wear, 2010, 268, p 751–755CrossRef V. Podgursky, R. Nisumaa, E. Adoberg, A. Surzhenkov, A. Sivitski, and P. Kulu, Comparative Study of Surface Roughness and Tribological Behavior During Running-in Period of Hard Coatings Deposited by Lateral Rotating Cathode Arc, Wear, 2010, 268, p 751–755CrossRef
53.
Zurück zum Zitat M.K.A. Ali, H. Xianjun, A. Elagouz, F.A. Essa, and A. AbdelkareemMA, Minimizing of the Boundary Friction Coefficient in Automotive Engines Using Al2O3 and TiO2 Nanoparticles, J. Nanopart. Res., 2016, 18, p 377CrossRef M.K.A. Ali, H. Xianjun, A. Elagouz, F.A. Essa, and A. AbdelkareemMA, Minimizing of the Boundary Friction Coefficient in Automotive Engines Using Al2O3 and TiO2 Nanoparticles, J. Nanopart. Res., 2016, 18, p 377CrossRef
54.
Zurück zum Zitat A.M. Abd El-Rahman and R. Wei, A Comparative Study of Conventional Magnetron Sputter Deposited and Plasma Enhanced Magnetron Sputter Deposited Ti-Si-C-N Nanocomposite Coatings, Surf. Coat. Technol., 2014, 241, p 74–79CrossRef A.M. Abd El-Rahman and R. Wei, A Comparative Study of Conventional Magnetron Sputter Deposited and Plasma Enhanced Magnetron Sputter Deposited Ti-Si-C-N Nanocomposite Coatings, Surf. Coat. Technol., 2014, 241, p 74–79CrossRef
55.
Zurück zum Zitat M.K.A. Ali and H. Xianjun, Tribological Characterization of M50 Matrix Composites Reinforced by TiO2/Graphene Nanomaterials in Dry Conditions under Different Speeds and Loads, Mater. Res. Express, 2019, 6, p 1165d6CrossRef M.K.A. Ali and H. Xianjun, Tribological Characterization of M50 Matrix Composites Reinforced by TiO2/Graphene Nanomaterials in Dry Conditions under Different Speeds and Loads, Mater. Res. Express, 2019, 6, p 1165d6CrossRef
56.
Zurück zum Zitat M. Abedi, A. Abdollah-zadeh, A. Vicenzo, M. Bestetti, F. Movassagh-Alanagh, and E. Damerchi, A Comparative Study of the Mechanical and Tribological Properties of PECVD Single Layer and Compositionally Graded TiSiCN Coatings, Ceram. Int., 2019, 45, p 21200–21207CrossRef M. Abedi, A. Abdollah-zadeh, A. Vicenzo, M. Bestetti, F. Movassagh-Alanagh, and E. Damerchi, A Comparative Study of the Mechanical and Tribological Properties of PECVD Single Layer and Compositionally Graded TiSiCN Coatings, Ceram. Int., 2019, 45, p 21200–21207CrossRef
57.
Zurück zum Zitat I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Edward Arnold, London, 1992 I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Edward Arnold, London, 1992
58.
Zurück zum Zitat B. Basu and M. Kalin, Tribology of Ceramics and Composites, Wiley, New Jersey, 2011CrossRef B. Basu and M. Kalin, Tribology of Ceramics and Composites, Wiley, New Jersey, 2011CrossRef
59.
Zurück zum Zitat S.K. Sharma, B.V.M. Kumar, K.-Y. Lim, Y.-W. Kim, and S.K. Nath, Erosion Behavior of SiC-WC Composites, Ceram. Int., 2014, 40, p 6829–6839CrossRef S.K. Sharma, B.V.M. Kumar, K.-Y. Lim, Y.-W. Kim, and S.K. Nath, Erosion Behavior of SiC-WC Composites, Ceram. Int., 2014, 40, p 6829–6839CrossRef
60.
Zurück zum Zitat R. Wei, Plasma Surface Engineering and its Practical Applications, R. Wei, Ed., Research Signpost Publisher, Thiruvananthapuram, 2008, p 87–112 ((ISBN: 978-81-308-0257-2)) R. Wei, Plasma Surface Engineering and its Practical Applications, R. Wei, Ed., Research Signpost Publisher, Thiruvananthapuram, 2008, p 87–112 ((ISBN: 978-81-308-0257-2))
61.
Zurück zum Zitat R. Wei, Nanocomposite Coatings and Nanocomposite Materials, A. Öchsner, W. Ahmed, and N. Ali, Ed., Trans Tech Publications, Zurich, 2008, p 239–2760 ((ISBN-13: 978-0-87849-346-2)) R. Wei, Nanocomposite Coatings and Nanocomposite Materials, A. Öchsner, W. Ahmed, and N. Ali, Ed., Trans Tech Publications, Zurich, 2008, p 239–2760 ((ISBN-13: 978-0-87849-346-2))
Metadaten
Titel
Effect of N2/TMS Gas Ratio on Mechanical and Erosion Performances of Ti-Si-C-N Nanocomposite Coatings
verfasst von
A. M. Abd El-Rahman
Ronghua Wei
M. Raaif
F. M. El-Hossary
M. Hammad Fawey
M. Abo El-kassem
Publikationsdatum
21.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04840-8

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Engineering and Performance 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.