Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2020

04.01.2020

Effect of nano-Al2O3 particles on the microstructure and mechanical performance of melt-spun process Sn–3.5Ag composite solder

verfasst von: Rizk Mostafa Shalaby, Hesham Elzanaty

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The addition of Al2O3 nanoparticles with 0.01, 0.03, 0.05, 0.07, and 0.1 wt% to eutectic solder Sn–3.5Ag was studied so as to be aware of the influence of Al2O3 addition as the particulate reinforcement to the microstructure, microhardness, and mechanical properties. By adding 0.1 wt% Al2O3 nanoparticles, the intermetallic compounds (IMCs; Ag3Sn) decreased from 95.55 to 45.22 nm. Additionally, the IMCs growth rates diminished by 30% to the plain solder. As a whole, the Al2O3 nanoparticles-embedded solder displayed better properties than plain solder in micro-creep and microhardness. Al2O3 nanoparticles fixed in the lead-free solder matrix impede the movement of dislocations by sticking and also stuck grain boundaries so as to enhance the mechanical properties of the lead-free solder matrix. The Sn–3.5Ag/Al2O3 lead-free solder showed improved properties compared with the traditional solder Sn63Pb37, which could substitute some Pb holding solder alloys in micro-electronic components and interconnections. The Scanning Electron Microscope (SEM) was carried out to study the morphology of the fabricated solders. The SEM revealed that the microstructure of solders was improved by doping Al2O3. According to X-ray diffraction analysis, the β-Sn (tetragonal phase) was formed as the main phase for all solders in addition to the peaks related to some intermetallic compound phase Ag3Sn. The results indicated that higher mechanical properties were obtained for composite solder Sn–3.5Ag/Al2O3 compared with plain solder. The melt-spun process is more resistant to indentation creep.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Rette, P. Lombeacht, B. Kemp, M. Graff, High melting Pb-free solder alloys for die-attach applications. Adv. Eng. Mater. 7(10), 965 (2005)CrossRef M. Rette, P. Lombeacht, B. Kemp, M. Graff, High melting Pb-free solder alloys for die-attach applications. Adv. Eng. Mater. 7(10), 965 (2005)CrossRef
2.
Zurück zum Zitat A.K. Gian, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, Interfacial microstructure and shear strength of Ag nano particle doped Sn–9Zn solder in ball grid array packages. Microelectron. Reliab. 746, 49 (2009) A.K. Gian, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, Interfacial microstructure and shear strength of Ag nano particle doped Sn–9Zn solder in ball grid array packages. Microelectron. Reliab. 746, 49 (2009)
3.
Zurück zum Zitat M.N. Islam, Y.C. Chan, A. Sharif, Rizvil MJ (2005) Effect of 9wt% in addition to Sn–3.5Ag–0.5Cu solder on the interfacial reaction with the Au/Nip metallization on Cu pads. J. Alloys Compd. 396, 217 (2005)CrossRef M.N. Islam, Y.C. Chan, A. Sharif, Rizvil MJ (2005) Effect of 9wt% in addition to Sn–3.5Ag–0.5Cu solder on the interfacial reaction with the Au/Nip metallization on Cu pads. J. Alloys Compd. 396, 217 (2005)CrossRef
4.
Zurück zum Zitat A.K. Gian, Y.C. Chan, W.K.C. Yung, Effect of nano Ni additions on the structure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid array packages. Mater. Sci. Eng. B 92, 162 (2009) A.K. Gian, Y.C. Chan, W.K.C. Yung, Effect of nano Ni additions on the structure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid array packages. Mater. Sci. Eng. B 92, 162 (2009)
5.
Zurück zum Zitat R.M. Shalaby, Effect of rapid solidification on mechanical properties of a lead free Sn–3.5Ag solder. J. Alloys Compd. 505(1), 113 (2010)CrossRef R.M. Shalaby, Effect of rapid solidification on mechanical properties of a lead free Sn–3.5Ag solder. J. Alloys Compd. 505(1), 113 (2010)CrossRef
6.
Zurück zum Zitat R.M. Shalaby, Effect of silicon addition on mechanical and electrical properties of Sn–Zn based alloys rapidly quenched from melt. Mater. Sci. Eng. A 112, 550 (2012) R.M. Shalaby, Effect of silicon addition on mechanical and electrical properties of Sn–Zn based alloys rapidly quenched from melt. Mater. Sci. Eng. A 112, 550 (2012)
7.
Zurück zum Zitat R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A 86, 560 (2013) R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A 86, 560 (2013)
8.
Zurück zum Zitat R.M. Shalaby, Indium, chromium and nickel-modified eutectic Sn–0.7wt% Cu lead–free solder rapidly solidified from molten state. J. Mater. Sci.: Mater. Electron. 26(9), 6625 (2015) R.M. Shalaby, Indium, chromium and nickel-modified eutectic Sn–0.7wt% Cu lead–free solder rapidly solidified from molten state. J. Mater. Sci.: Mater. Electron. 26(9), 6625 (2015)
9.
Zurück zum Zitat R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt–spun process Sn–3.5Ag and Sn–3.5Ag–xCu lead–free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446 (2017)CrossRef R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt–spun process Sn–3.5Ag and Sn–3.5Ag–xCu lead–free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446 (2017)CrossRef
10.
Zurück zum Zitat G. Ghosh, Interfacial reaction between multicomponent lead free solders and Ag, Cu, Ni and Pd substrates. J. Electron. Mater. 33(10), 1080 (2004)CrossRef G. Ghosh, Interfacial reaction between multicomponent lead free solders and Ag, Cu, Ni and Pd substrates. J. Electron. Mater. 33(10), 1080 (2004)CrossRef
11.
Zurück zum Zitat M.N. Islam, Y.C. Chan, M.J. Rizvil, W. Jellek, Investigations of interfaced reactions of Sn–Zn based and Sn–Ag–Cu lead–free solder alloys as replacement for Sn–Pb solder. J. Alloys Compd. 136, 400 (2005) M.N. Islam, Y.C. Chan, M.J. Rizvil, W. Jellek, Investigations of interfaced reactions of Sn–Zn based and Sn–Ag–Cu lead–free solder alloys as replacement for Sn–Pb solder. J. Alloys Compd. 136, 400 (2005)
12.
Zurück zum Zitat T. Ichitsubo, E. Matsubara, K. Ugiwara, M. Yomaguchi, H. Irie, S. Kumamoto et al., Control of compound forming reaction at the interface between Sn–Zn solder and Cu substrate. J. Alloys Compd. 392, 200 (2005)CrossRef T. Ichitsubo, E. Matsubara, K. Ugiwara, M. Yomaguchi, H. Irie, S. Kumamoto et al., Control of compound forming reaction at the interface between Sn–Zn solder and Cu substrate. J. Alloys Compd. 392, 200 (2005)CrossRef
13.
Zurück zum Zitat J. Shen, Y.C. Liu, Han YJ, Tian YM, Gao HX, Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn–3.5Ag lead-free solder. Mater. Sci. Eng. A 441, 135 (2006)CrossRef J. Shen, Y.C. Liu, Han YJ, Tian YM, Gao HX, Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn–3.5Ag lead-free solder. Mater. Sci. Eng. A 441, 135 (2006)CrossRef
14.
Zurück zum Zitat Z.X. Li, M. Gupta, High strength lead–free composite solder materials using hypoeutectic Sn–Zn as lead–free solder. Mater. Lett. 655, 61 (2007) Z.X. Li, M. Gupta, High strength lead–free composite solder materials using hypoeutectic Sn–Zn as lead–free solder. Mater. Lett. 655, 61 (2007)
15.
Zurück zum Zitat J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477(1–2), 552 (2009)CrossRef J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477(1–2), 552 (2009)CrossRef
16.
Zurück zum Zitat M.S. Gumaan, R.M. Shalaby, E.A.M. Ali, M. Kamal, Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn–Ag alloy. J. Mater. Sci.: Mater. Electron. 29(11), 8886–8894 (2018) M.S. Gumaan, R.M. Shalaby, E.A.M. Ali, M. Kamal, Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn–Ag alloy. J. Mater. Sci.: Mater. Electron. 29(11), 8886–8894 (2018)
17.
Zurück zum Zitat R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Design and properties of new lead-free solder joints using Sn-3.5Ag-Cu solder. Silicon J. 10(5), 1861–1871 (2018)CrossRef R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Design and properties of new lead-free solder joints using Sn-3.5Ag-Cu solder. Silicon J. 10(5), 1861–1871 (2018)CrossRef
18.
Zurück zum Zitat G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloys Compd. 251, 665 (2016) G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloys Compd. 251, 665 (2016)
19.
Zurück zum Zitat L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Chiang, Effects of nano–Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31, 4831 (2010)CrossRef L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Chiang, Effects of nano–Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31, 4831 (2010)CrossRef
20.
Zurück zum Zitat A. Yakymovych, Y. Plevachuk, P. Švec Sr., D. Janičkovič, P. Šebo, N. Beronská, M. Nosko, L. Orovcik, A. Roshanghias, H. Ipser, Nanocomposite SAC solders: morphology, electrical and mechanical properties of Sn–3.8Ag–0.7Cu solders by adding Co nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 10965 (2017) A. Yakymovych, Y. Plevachuk, P. Švec Sr., D. Janičkovič, P. Šebo, N. Beronská, M. Nosko, L. Orovcik, A. Roshanghias, H. Ipser, Nanocomposite SAC solders: morphology, electrical and mechanical properties of Sn–3.8Ag–0.7Cu solders by adding Co nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 10965 (2017)
21.
Zurück zum Zitat E. Schreiber, O.L. Anderson, N. Soga (1973) Elastic Constant and Their Measurements. (McGraw–Hill, New York, 1973), p. 82. E. Schreiber, O.L. Anderson, N. Soga (1973) Elastic Constant and Their Measurements. (McGraw–Hill, New York, 1973), p. 82.
22.
Zurück zum Zitat S. Timoshenko, J. N. Goddier, Theory of Elasticity, 2nd edn. (McGraw–Hill, New York, 1951), p. 277. S. Timoshenko, J. N. Goddier, Theory of Elasticity, 2nd edn. (McGraw–Hill, New York, 1951), p. 277.
23.
Zurück zum Zitat T.R. Bieler, H. Jiang, Influence of Sn grain size and orientation on the thermo mechanical response and reliability of Pb–free solder joints. IEEE Trans. Compd. Packag. Technol. 31(2), 1462 (2006) T.R. Bieler, H. Jiang, Influence of Sn grain size and orientation on the thermo mechanical response and reliability of Pb–free solder joints. IEEE Trans. Compd. Packag. Technol. 31(2), 1462 (2006)
24.
Zurück zum Zitat B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addision-Wesely, Boston, 1978), p. 248 B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addision-Wesely, Boston, 1978), p. 248
25.
Zurück zum Zitat D.Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. J. Alloys Compd. 376, 170–175 (2004)CrossRef D.Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. J. Alloys Compd. 376, 170–175 (2004)CrossRef
26.
Zurück zum Zitat R.M. Shalaby, Effect of indium content and rapid solidification on microhardness and micro–creep of Sn–Zn eutectic lead free solder alloy. Cryst. Res. Technol. 45(4), 427 (2010)CrossRef R.M. Shalaby, Effect of indium content and rapid solidification on microhardness and micro–creep of Sn–Zn eutectic lead free solder alloy. Cryst. Res. Technol. 45(4), 427 (2010)CrossRef
27.
Zurück zum Zitat Z. Zhu, Y.C. Chan, C. Zhong, C.L. Gan, F. Wu, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A 160, 727 (2018) Z. Zhu, Y.C. Chan, C. Zhong, C.L. Gan, F. Wu, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A 160, 727 (2018)
Metadaten
Titel
Effect of nano-Al2O3 particles on the microstructure and mechanical performance of melt-spun process Sn–3.5Ag composite solder
verfasst von
Rizk Mostafa Shalaby
Hesham Elzanaty
Publikationsdatum
04.01.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02821-9

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Zur Ausgabe

Neuer Inhalt