Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2016

05.03.2016

Effect of nickel-ion doping in MnO2 nanoneedles as electrocatalyst for the oxygen reduction reaction

verfasst von: Jiayu Hao, Yisi Liu, Haibo Shen, Wenzhang Li, Jie Li, Yaomin Li, Qiyuan Chen

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, nickel (Ni)-doped MnO2 nanoneedles were synthesized via a facile hydrothermal method. The effects of nickel doping on structure, morphology and chemical composition of MnO2 nanoneedles were investigated by X-ray diffraction (XRD) spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The XRD patterns proved that nickel doping facilitated the formation of α-MnO2. The role of nickel doping in MnO2 nanoneedles for the oxygen reduction reaction in alkaline media was investigated. The electrocatalytic activities of the nanoneedles were tested by cyclic voltammograms, electrochemical impedance spectroscopy and rotating disk electrode measurements. The electrochemical measurements were operated for the varying amount of Ni doping (Ni atomic ratio of 2.22, 2.76 and 2.90 %) in O2-saturated 0.1 M KOH aqueous solution. The 2.22 % Ni doping MnO2 exhibited higher current density, more positive half-wave potential, lower charge transfer resistance and faster reaction kinetic. Further analysis reveals that the excellent electrocatalytic activity of 2.22 % Ni doping MnO2 is attributed to the increment of Mn(III) as electrochemical active sites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Caramia, B. Bozzini, Materials science aspects of zinc-air batteries: a review. Mater Renew Sust Energy 3, 1–12 (2014) V. Caramia, B. Bozzini, Materials science aspects of zinc-air batteries: a review. Mater Renew Sust Energy 3, 1–12 (2014)
2.
Zurück zum Zitat G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: promise and challenges. J Phys Chem Lett 1, 2193–2203 (2010)CrossRef G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: promise and challenges. J Phys Chem Lett 1, 2193–2203 (2010)CrossRef
3.
Zurück zum Zitat J.S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1, 34–50 (2011)CrossRef J.S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1, 34–50 (2011)CrossRef
4.
Zurück zum Zitat M.A. Rahman, X. Wang, C. Wen, High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759–A1771 (2013)CrossRef M.A. Rahman, X. Wang, C. Wen, High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759–A1771 (2013)CrossRef
5.
Zurück zum Zitat Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002)CrossRef Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002)CrossRef
6.
Zurück zum Zitat F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012)CrossRef F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012)CrossRef
7.
Zurück zum Zitat Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)CrossRef Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)CrossRef
8.
Zurück zum Zitat Y. Zhang, X. Wu, Y. Fu, W. Shen, X. Zeng, W. Ding, Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries. J. Mater. Res. 29, 2863–2870 (2014)CrossRef Y. Zhang, X. Wu, Y. Fu, W. Shen, X. Zeng, W. Ding, Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries. J. Mater. Res. 29, 2863–2870 (2014)CrossRef
9.
Zurück zum Zitat R. Cao, J.S. Lee, M. Liu, J. Cho, Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2, 816–829 (2012)CrossRef R. Cao, J.S. Lee, M. Liu, J. Cho, Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2, 816–829 (2012)CrossRef
10.
Zurück zum Zitat X. Han, T. Zhang, J. Du, F. Cheng, J. Chen, Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci 4, 368–376 (2013)CrossRef X. Han, T. Zhang, J. Du, F. Cheng, J. Chen, Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem Sci 4, 368–376 (2013)CrossRef
11.
Zurück zum Zitat Q. Li, R. Cao, J. Cho, G. Wu, Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. Phys. Chem. Chem. Phys. 16, 13568–13582 (2014)CrossRef Q. Li, R. Cao, J. Cho, G. Wu, Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. Phys. Chem. Chem. Phys. 16, 13568–13582 (2014)CrossRef
12.
Zurück zum Zitat X. Zhou, Z. Bai, M. Wu, J. Qiao, Z. Chen, 3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. J Mater Chem A 3, 3343–3350 (2015)CrossRef X. Zhou, Z. Bai, M. Wu, J. Qiao, Z. Chen, 3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. J Mater Chem A 3, 3343–3350 (2015)CrossRef
13.
Zurück zum Zitat M. Calegaro, F. Lima, E. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions. J. Power Sources 158, 735–739 (2006)CrossRef M. Calegaro, F. Lima, E. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions. J. Power Sources 158, 735–739 (2006)CrossRef
14.
Zurück zum Zitat J. Duan, Y. Zheng, S. Chen, Y. Tang, M. Jaroniec, S. Qiao, Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Commun. 49, 7705–7707 (2013)CrossRef J. Duan, Y. Zheng, S. Chen, Y. Tang, M. Jaroniec, S. Qiao, Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Commun. 49, 7705–7707 (2013)CrossRef
15.
Zurück zum Zitat F.H. Lima, M.L. Calegaro, E.A. Ticianelli, Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 590, 152–160 (2006)CrossRef F.H. Lima, M.L. Calegaro, E.A. Ticianelli, Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 590, 152–160 (2006)CrossRef
16.
Zurück zum Zitat Q. Tang, L. Jiang, J. Liu, S. Wang, G. Sun, Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4, 457–463 (2014)CrossRef Q. Tang, L. Jiang, J. Liu, S. Wang, G. Sun, Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4, 457–463 (2014)CrossRef
17.
Zurück zum Zitat G. Du, X. Liu, Y. Zong, T.A. Hor, A. Yu, Z. Liu, Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale 5, 4657–4661 (2013)CrossRef G. Du, X. Liu, Y. Zong, T.A. Hor, A. Yu, Z. Liu, Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale 5, 4657–4661 (2013)CrossRef
18.
Zurück zum Zitat P. Żółtowski, D. Dražić, L. Vorkapić, Carbon-air electrode with regenerative short time overload capacity: part 1. Effect of manganese dioxide. J. Appl. Electrochem. 3, 271–283 (1973)CrossRef P. Żółtowski, D. Dražić, L. Vorkapić, Carbon-air electrode with regenerative short time overload capacity: part 1. Effect of manganese dioxide. J. Appl. Electrochem. 3, 271–283 (1973)CrossRef
19.
Zurück zum Zitat Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim. Acta 69, 295–300 (2012)CrossRef Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim. Acta 69, 295–300 (2012)CrossRef
20.
Zurück zum Zitat F.T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, T.A. Hor, Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochim. Acta 114, 598–604 (2013)CrossRef F.T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, T.A. Hor, Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochim. Acta 114, 598–604 (2013)CrossRef
21.
Zurück zum Zitat D.A. Slanac, A. Lie, J.A. Paulson, K.J. Stevenson, K.P. Johnston, Bifunctional catalysts for alkaline oxygen reduction reaction via promotion of ligand and ensemble effects at Ag/MnOx nanodomains. J. Phys. Chem. C 116, 11032–11039 (2012)CrossRef D.A. Slanac, A. Lie, J.A. Paulson, K.J. Stevenson, K.P. Johnston, Bifunctional catalysts for alkaline oxygen reduction reaction via promotion of ligand and ensemble effects at Ag/MnOx nanodomains. J. Phys. Chem. C 116, 11032–11039 (2012)CrossRef
22.
Zurück zum Zitat D.J. Davis, T.N. Lambert, J.A. Vigil et al., Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C 118, 17342–17350 (2014)CrossRef D.J. Davis, T.N. Lambert, J.A. Vigil et al., Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C 118, 17342–17350 (2014)CrossRef
23.
Zurück zum Zitat I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 111, 1434–1443 (2007)CrossRef I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 111, 1434–1443 (2007)CrossRef
24.
Zurück zum Zitat F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 22, 898–905 (2009)CrossRef F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 22, 898–905 (2009)CrossRef
25.
Zurück zum Zitat K. Selvakumar, S.M. Senthil Kumar, R. Thangamuthu et al., Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C 119, 6604–6618 (2015)CrossRef K. Selvakumar, S.M. Senthil Kumar, R. Thangamuthu et al., Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C 119, 6604–6618 (2015)CrossRef
26.
Zurück zum Zitat Y. Zhang, J. Ge, L. Wang et al., Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 3, 2771–2778 (2013) Y. Zhang, J. Ge, L. Wang et al., Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 3, 2771–2778 (2013)
27.
Zurück zum Zitat J. Kang, H. Wang, S. Ji, J. Key, R. Wang, Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J. Power Sources 251, 363–369 (2014)CrossRef J. Kang, H. Wang, S. Ji, J. Key, R. Wang, Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J. Power Sources 251, 363–369 (2014)CrossRef
28.
Zurück zum Zitat Y. Ma, R. Wang, H. Wang, J. Key, S. Ji, Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J. Power Sources 280, 526–532 (2015)CrossRef Y. Ma, R. Wang, H. Wang, J. Key, S. Ji, Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J. Power Sources 280, 526–532 (2015)CrossRef
29.
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002)CrossRef M. Toupin, T. Brousse, D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002)CrossRef
30.
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRef M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRef
31.
Zurück zum Zitat H. Li, G. Qi, X. Zhang, X. Huang, W. Li, W. Shen, Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide. Appl. Catal. B 103, 54–61 (2011)CrossRef H. Li, G. Qi, X. Zhang, X. Huang, W. Li, W. Shen, Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide. Appl. Catal. B 103, 54–61 (2011)CrossRef
32.
Zurück zum Zitat M. Sun, B. Lan, T. Lin et al., Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. Cryst Eng Comm 15, 7010–7018 (2013)CrossRef M. Sun, B. Lan, T. Lin et al., Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. Cryst Eng Comm 15, 7010–7018 (2013)CrossRef
33.
Zurück zum Zitat J. Luo, Q. Zhang, A. Huang, S.L. Suib, Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves. Microporous Mesoporous Mater. 35, 209–217 (2000)CrossRef J. Luo, Q. Zhang, A. Huang, S.L. Suib, Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves. Microporous Mesoporous Mater. 35, 209–217 (2000)CrossRef
34.
Zurück zum Zitat Y. Oaki, H. Imai, One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew. Chem. 119, 5039–5043 (2007)CrossRef Y. Oaki, H. Imai, One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew. Chem. 119, 5039–5043 (2007)CrossRef
35.
Zurück zum Zitat L. Zhou, J. Zhang, J. He, Y. Hu, H. Tian, Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Mater. Res. Bull. 46, 1714–1722 (2011)CrossRef L. Zhou, J. Zhang, J. He, Y. Hu, H. Tian, Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Mater. Res. Bull. 46, 1714–1722 (2011)CrossRef
36.
Zurück zum Zitat R. Chen, T. Chirayil, P. Zavalij, M.S. Whittingham, The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide. Solid State Ionics 86, 1–7 (1996)CrossRef R. Chen, T. Chirayil, P. Zavalij, M.S. Whittingham, The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide. Solid State Ionics 86, 1–7 (1996)CrossRef
37.
Zurück zum Zitat X. Duan, J. Yang, H. Gao, J. Ma, L. Jiao, W. Zheng, Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. Cryst Eng Comm 14, 4196–4204 (2012)CrossRef X. Duan, J. Yang, H. Gao, J. Ma, L. Jiao, W. Zheng, Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. Cryst Eng Comm 14, 4196–4204 (2012)CrossRef
38.
Zurück zum Zitat Y. Cao, H. Yang, X. Ai, L. Xiao, The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem. 557, 127–134 (2003)CrossRef Y. Cao, H. Yang, X. Ai, L. Xiao, The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem. 557, 127–134 (2003)CrossRef
Metadaten
Titel
Effect of nickel-ion doping in MnO2 nanoneedles as electrocatalyst for the oxygen reduction reaction
verfasst von
Jiayu Hao
Yisi Liu
Haibo Shen
Wenzhang Li
Jie Li
Yaomin Li
Qiyuan Chen
Publikationsdatum
05.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4606-2

Weitere Artikel der Ausgabe 6/2016

Journal of Materials Science: Materials in Electronics 6/2016 Zur Ausgabe

Neuer Inhalt