Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 3/2021

27.11.2020 | Original Paper

Effect of Nonlinear Deformational Macrojoint on Stress Wave Propagation Through a Double-Scale Discontinuous Rock Mass

verfasst von: L. F. Fan, M. Wang, Z. J. Wu

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The overall dynamic mechanical behavior of a double-scale discontinuous rock mass with a nonlinear deformational macrojoint was investigated. A method of combining the split three characteristic lines with the piecewise linear displacement discontinuity model (DDM) was proposed. The method was applied to investigate the transmission coefficient of P-wave propagation normally through a double-scale discontinuous rock mass with a nonlinear deformational macrojoint. The results were verified by comparison with the results of P-wave propagation normally through a double-scale discontinuous rock mass with a linear deformational macrojoint. The results showed that for a small amplitude stress wave, the nonlinear deformational macrojoint can be simplified as a linear deformational form to study the stress wave propagation, whereas for a large amplitude stress wave, the effects of the nonlinear deformational behavior of the macrojoint must be considered. The difference of the effects of nonlinear and linear deformational macrojoints on large amplitude stress wave propagation can be overlooked in the low-frequency or high-frequency regions. In addition, when the incident stress wave amplitude and initial macrojoint stiffness are sufficiently large, the effects of the nonlinear deformational macrojoint on stress wave propagation can be overlooked, and the effects of microdefects must be considered. The influence degree of microdefects on the stress wave propagation increases with the increase of incident stress wave frequency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20(6):249–268CrossRef Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20(6):249–268CrossRef
Zurück zum Zitat Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140CrossRef Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140CrossRef
Zurück zum Zitat Cai JG, Zhao J (2000) Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int J Rock Mech Min Sci 37(4):661–682CrossRef Cai JG, Zhao J (2000) Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int J Rock Mech Min Sci 37(4):661–682CrossRef
Zurück zum Zitat Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min Sci Geomech Abstr 29(3):198–223CrossRef Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min Sci Geomech Abstr 29(3):198–223CrossRef
Zurück zum Zitat Deng XF, Zhu JB, Chen SG, Zhao J (2012) Some fundamental issues and verification of 3DEC in modeling wave propagation in jointed rock masses. Rock Mech Rock Eng 45(5):943–951CrossRef Deng XF, Zhu JB, Chen SG, Zhao J (2012) Some fundamental issues and verification of 3DEC in modeling wave propagation in jointed rock masses. Rock Mech Rock Eng 45(5):943–951CrossRef
Zurück zum Zitat Deng XF, Zhu JB, Chen SG, Zhao ZY, Zhou YX, Zhao J (2014) Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn Undergr Space Technol 43:88–100CrossRef Deng XF, Zhu JB, Chen SG, Zhao ZY, Zhou YX, Zhao J (2014) Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn Undergr Space Technol 43:88–100CrossRef
Zurück zum Zitat Fakhimi AA, Fairhurst C (1994) A model for the time-dependent behavior of rock. Int J Rock Mech Min Sci Geomech Abstr 31(2):117–126CrossRef Fakhimi AA, Fairhurst C (1994) A model for the time-dependent behavior of rock. Int J Rock Mech Min Sci Geomech Abstr 31(2):117–126CrossRef
Zurück zum Zitat Fan LF, Yi XW, Ma GW (2013) Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock. Int J Appl Mech 5(2):1350022CrossRef Fan LF, Yi XW, Ma GW (2013) Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock. Int J Appl Mech 5(2):1350022CrossRef
Zurück zum Zitat Fan LF, Gao JW, Du XL, Wu ZJ (2020a) Spatial gradient distributions of thermal shock-induced damage to granite. J Rock Mech Geotech Eng 12(5):917–926CrossRef Fan LF, Gao JW, Du XL, Wu ZJ (2020a) Spatial gradient distributions of thermal shock-induced damage to granite. J Rock Mech Geotech Eng 12(5):917–926CrossRef
Zurück zum Zitat Hudson JA, Pointer T, Liu E (2001) Effective-medium theories for fluid-saturated materials with aligned cracks. Geophys Prospect 49(5):509–522CrossRef Hudson JA, Pointer T, Liu E (2001) Effective-medium theories for fluid-saturated materials with aligned cracks. Geophys Prospect 49(5):509–522CrossRef
Zurück zum Zitat Ichikawa Y, Kawamura K, Uesugi K, Seo YS, Fujii N (2011) Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis. Comput Methods Appl Mech Eng 191(1):47–72 Ichikawa Y, Kawamura K, Uesugi K, Seo YS, Fujii N (2011) Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis. Comput Methods Appl Mech Eng 191(1):47–72
Zurück zum Zitat Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Malden Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Malden
Zurück zum Zitat Ju Y, Sudak L, Xie H (2007) Study on stress wave propagation in fractured rocks with fractal joint surfaces. Int J Solids Struct 44(13):4256–4271CrossRef Ju Y, Sudak L, Xie H (2007) Study on stress wave propagation in fractured rocks with fractal joint surfaces. Int J Solids Struct 44(13):4256–4271CrossRef
Zurück zum Zitat Kolsky H (1953) Stress waves in solids. Clarendon Press, Oxford Kolsky H (1953) Stress waves in solids. Clarendon Press, Oxford
Zurück zum Zitat Kulhawy FH (1975) Stress deformation properties of rock and rock discontinuities. Eng Geol 9(4):327–350CrossRef Kulhawy FH (1975) Stress deformation properties of rock and rock discontinuities. Eng Geol 9(4):327–350CrossRef
Zurück zum Zitat Li JC (2013) Wave propagation across non-linear rock joints based on time-domain recursive method. Geophys J Int 193(2):970–985CrossRef Li JC (2013) Wave propagation across non-linear rock joints based on time-domain recursive method. Geophys J Int 193(2):970–985CrossRef
Zurück zum Zitat Li JC, Ma GW, Zhao J (2010) An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res 115(B3):B03305 Li JC, Ma GW, Zhao J (2010) An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res 115(B3):B03305
Zurück zum Zitat Li JC, Wu W, Li HB, Zhu JB, Zhao J (2013) A thin-layer interface model for wave propagation through filled rock joints. J Appl Geophys 91(4):31–38CrossRef Li JC, Wu W, Li HB, Zhu JB, Zhao J (2013) A thin-layer interface model for wave propagation through filled rock joints. J Appl Geophys 91(4):31–38CrossRef
Zurück zum Zitat Li JC, Li HB, Jiao YY, Liu YQ, Xia X, Yu C (2014) Analysis for oblique wave propagation across filled joints based on thin-layer interface model. J Appl Geophys 102:39–46CrossRef Li JC, Li HB, Jiao YY, Liu YQ, Xia X, Yu C (2014) Analysis for oblique wave propagation across filled joints based on thin-layer interface model. J Appl Geophys 102:39–46CrossRef
Zurück zum Zitat Li JC, Liu TT, Li HB, Liu YQ, Liu B, Xia X (2015) Shear wave propagation across filled joints with the effect of interfacial shear strength. Rock Mech Rock Eng 48(4):1547–1557CrossRef Li JC, Liu TT, Li HB, Liu YQ, Liu B, Xia X (2015) Shear wave propagation across filled joints with the effect of interfacial shear strength. Rock Mech Rock Eng 48(4):1547–1557CrossRef
Zurück zum Zitat Li HB, Liu TT, Liu YQ, Li JC, Xia X, Bo L (2015) Numerical modeling of wave transmission across rock masses with nonlinear joints. Rock Mech Rock Eng 49(3):1–7 Li HB, Liu TT, Liu YQ, Li JC, Xia X, Bo L (2015) Numerical modeling of wave transmission across rock masses with nonlinear joints. Rock Mech Rock Eng 49(3):1–7
Zurück zum Zitat Li JC, Li NN, Li HB, Zhao J (2017) An SHPB test study on wave propagation across rock masses with different contact area ratios of joint. Int J of Impact Eng 105:109–116CrossRef Li JC, Li NN, Li HB, Zhao J (2017) An SHPB test study on wave propagation across rock masses with different contact area ratios of joint. Int J of Impact Eng 105:109–116CrossRef
Zurück zum Zitat Li XF, Li HB, Li JC, Li ZW (2018) Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mech Rock Eng 51(8):2373–2393CrossRef Li XF, Li HB, Li JC, Li ZW (2018) Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mech Rock Eng 51(8):2373–2393CrossRef
Zurück zum Zitat Li XF, Li HB, Li JC, Zhao J (2018) Effect of joint thickness on seismic response across a rock fracture filled with dry granular materials. Géotech Lett 8(3):1–19 Li XF, Li HB, Li JC, Zhao J (2018) Effect of joint thickness on seismic response across a rock fracture filled with dry granular materials. Géotech Lett 8(3):1–19
Zurück zum Zitat Ma GW, Li JC, Zhao J (2011) Three-phase medium model for filled rock joint and interaction with stress waves. Int J Numer Anal Methods Geomech 35(1):97–110CrossRef Ma GW, Li JC, Zhao J (2011) Three-phase medium model for filled rock joint and interaction with stress waves. Int J Numer Anal Methods Geomech 35(1):97–110CrossRef
Zurück zum Zitat Ma GW, Fan LF, Li JC (2013) Evaluation of equivalent medium methods for stress wave propagation in jointed rock mass. Int J Numer Anal Methods Geomech 37(7):701–715CrossRef Ma GW, Fan LF, Li JC (2013) Evaluation of equivalent medium methods for stress wave propagation in jointed rock mass. Int J Numer Anal Methods Geomech 37(7):701–715CrossRef
Zurück zum Zitat Markov M, Levine V, Mousatov A, Kazatchenko E (2005) Elastic properties of double-porosity rocks using the differential effective medium model. Geophys Prospect 53(5):733–754CrossRef Markov M, Levine V, Mousatov A, Kazatchenko E (2005) Elastic properties of double-porosity rocks using the differential effective medium model. Geophys Prospect 53(5):733–754CrossRef
Zurück zum Zitat Niu LL, Zhu WC, Li SH, Guan K (2018) Determining the viscosity coefficient for viscoelastic wave propagation in rock bars. Rock Mech Rock Eng 51(5):1347–1359CrossRef Niu LL, Zhu WC, Li SH, Guan K (2018) Determining the viscosity coefficient for viscoelastic wave propagation in rock bars. Rock Mech Rock Eng 51(5):1347–1359CrossRef
Zurück zum Zitat Pyrak-Nolte LJ (1996) The seismic response of fractures and the interrelations among fracture properties. Int J Rock Mech Min Sci Geomech Abstr 33(8):787–802CrossRef Pyrak-Nolte LJ (1996) The seismic response of fractures and the interrelations among fracture properties. Int J Rock Mech Min Sci Geomech Abstr 33(8):787–802CrossRef
Zurück zum Zitat Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68(5):1516–1521CrossRef Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 68(5):1516–1521CrossRef
Zurück zum Zitat Wang LL, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split hopkinson bar technique to use viscoelastic bars. Int J Impact Eng 15(5):669–686CrossRef Wang LL, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split hopkinson bar technique to use viscoelastic bars. Int J Impact Eng 15(5):669–686CrossRef
Zurück zum Zitat Wei W, Shao ZS, Zhang YY, Qiao RJ, Gao JP (2019) Fundamentals and applications of microwave energy in rock and concrete processing—a review. Appl Therm Eng 157(5):113751CrossRef Wei W, Shao ZS, Zhang YY, Qiao RJ, Gao JP (2019) Fundamentals and applications of microwave energy in rock and concrete processing—a review. Appl Therm Eng 157(5):113751CrossRef
Zurück zum Zitat Wu K, Shao ZS (2019) Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks. J Eng Mech ASCE 145(10):04019077CrossRef Wu K, Shao ZS (2019) Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks. J Eng Mech ASCE 145(10):04019077CrossRef
Zurück zum Zitat Yi W, Nihei KT, Rector JW, Nakagawa S, Myer LR, Cook NGW (1997) Frequency-dependent seismic anisotropy in fractured rock. Int J Rock Mech Min Sci 34(3–4):3490–2147483647 Yi W, Nihei KT, Rector JW, Nakagawa S, Myer LR, Cook NGW (1997) Frequency-dependent seismic anisotropy in fractured rock. Int J Rock Mech Min Sci 34(3–4):3490–2147483647
Zurück zum Zitat Zhao J, Cai JG (2001) Transmission of elastic p-waves across single fractures with a nonlinear normal deformational behavior. Rock Mech Rock Eng 34(1):3–22CrossRef Zhao J, Cai JG (2001) Transmission of elastic p-waves across single fractures with a nonlinear normal deformational behavior. Rock Mech Rock Eng 34(1):3–22CrossRef
Zurück zum Zitat Zhao J, Zhao XB, Cai JG (2006) A further study of P-wave attenuation across parallel fractures with linear deformational behavior. Int J Rock Mech Min Sci 43(5):776–788CrossRef Zhao J, Zhao XB, Cai JG (2006) A further study of P-wave attenuation across parallel fractures with linear deformational behavior. Int J Rock Mech Min Sci 43(5):776–788CrossRef
Zurück zum Zitat Zhao XB, Zhao J, Cai JG, Hefny AM (2008) UDEC modelling on wave propagation across fractured rock masses. Comput Geotech 35(1):97–104CrossRef Zhao XB, Zhao J, Cai JG, Hefny AM (2008) UDEC modelling on wave propagation across fractured rock masses. Comput Geotech 35(1):97–104CrossRef
Zurück zum Zitat Zhao XB, Zhao J, Cai JG (2010) P-wave transmission across fractures with nonlinear deformational behaviour. Int J Numer Anal Methods Geomech 30(11):1097–1112CrossRef Zhao XB, Zhao J, Cai JG (2010) P-wave transmission across fractures with nonlinear deformational behaviour. Int J Numer Anal Methods Geomech 30(11):1097–1112CrossRef
Zurück zum Zitat Zhu J, Hu SS, Wang LL (2009) An analysis of stress uniformity for concrete-like specimens during SHPB tests. Int J Impact Eng 36(1):61–72CrossRef Zhu J, Hu SS, Wang LL (2009) An analysis of stress uniformity for concrete-like specimens during SHPB tests. Int J Impact Eng 36(1):61–72CrossRef
Metadaten
Titel
Effect of Nonlinear Deformational Macrojoint on Stress Wave Propagation Through a Double-Scale Discontinuous Rock Mass
verfasst von
L. F. Fan
M. Wang
Z. J. Wu
Publikationsdatum
27.11.2020
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 3/2021
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-020-02308-8

Weitere Artikel der Ausgabe 3/2021

Rock Mechanics and Rock Engineering 3/2021 Zur Ausgabe