Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

14.10.2020

Effect of Peak Temperature on Microstructure and Mechanical Properties of Thermally Simulated Welding Heat-Affected Zones for 09MnNiDR Steel

verfasst von: Rui Cao, Zhaoqing Yang, Jinmei Li, Xiaowu Liang, Wanqing Lei, Jianxiao Zhang, Jianhong Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructures and mechanical properties of various heat-affected zones (HAZs) for 09MnNiDR pressure vessel steel are systematically analyzed. The results show that at − 70 °C, the thermally simulated subcritical heat-affected zone (SCHAZ) reaches the impact toughness of 270 J, which is the highest among various HAZs. Owing to the appearance of martensite–austenite (M–A) constituents distributed along the grain boundary in the thermally simulated critical heat-affected zone and fine-grained heat-affected zone, the impact toughness sharply decreases compared with that of the SCHAZ. The impact toughness of the coarse-grained heat-affected zone (CGHAZ) reaches 20 J, which makes the CGHAZ the weakest zone. The microstructure of the CGHAZ is composed of relatively coarse bainite and ferrite. Moreover, the proportion of high-angle grain boundaries (HAGBs) in CGHAZ is the lowest, at only 22%. Coarse grain size, microstructural transformation, and different proportions of HAGBs significantly affect the impact toughness in each zone of HAZs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Xie, L.X. Du, J. Hu et al., Microstructure and Mechanical Properties of a Novel 1000 MPa Grade TMCP Low Carbon Microalloyed Steel with Combination of High Strength and Excellent Toughness, Mater. Sci. Eng., A, 2014, 612, p 123–130 H. Xie, L.X. Du, J. Hu et al., Microstructure and Mechanical Properties of a Novel 1000 MPa Grade TMCP Low Carbon Microalloyed Steel with Combination of High Strength and Excellent Toughness, Mater. Sci. Eng., A, 2014, 612, p 123–130
2.
Zurück zum Zitat S.K. Sharma and S. Maheshwari, A Review on Welding of High Strength Oil and Gas Pipeline Steels, J. Nat. Gas Sci. Eng., 2017, 38, p 203–217 S.K. Sharma and S. Maheshwari, A Review on Welding of High Strength Oil and Gas Pipeline Steels, J. Nat. Gas Sci. Eng., 2017, 38, p 203–217
3.
Zurück zum Zitat Y. Zhou, T. Jia, X. Zhang et al., Microstructure and Toughness of the CGHAZ of an Offshore Platform Steel, J. Mater. Process. Technol., 2015, 219, p 314–320 Y. Zhou, T. Jia, X. Zhang et al., Microstructure and Toughness of the CGHAZ of an Offshore Platform Steel, J. Mater. Process. Technol., 2015, 219, p 314–320
4.
Zurück zum Zitat L. Lan, C. Qiu, D. Zhao et al., Analysis of Microstructural Variation and Mechanical Behaviors in Submerged Arc Welded Joint of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2012, 558, p 592–601 L. Lan, C. Qiu, D. Zhao et al., Analysis of Microstructural Variation and Mechanical Behaviors in Submerged Arc Welded Joint of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2012, 558, p 592–601
5.
Zurück zum Zitat S. Kumar and S.K. Nath, Effect of Heat Input on Impact Toughness in Transition Temperature Region of Weld CGHAZ of a HY 85 Steel, J. Mater. Process. Technol., 2016, 236, p 216–224 S. Kumar and S.K. Nath, Effect of Heat Input on Impact Toughness in Transition Temperature Region of Weld CGHAZ of a HY 85 Steel, J. Mater. Process. Technol., 2016, 236, p 216–224
6.
Zurück zum Zitat Z. Zhu, J. Han, and H. Li, Influence of Heat Input on Microstructure and Toughness Properties in Simulated CGHAZ of X80 Steel Manufactured Using High-Temperature Processing, Metall. Mater. Trans. A, 2015, 46, p 5467–5475 Z. Zhu, J. Han, and H. Li, Influence of Heat Input on Microstructure and Toughness Properties in Simulated CGHAZ of X80 Steel Manufactured Using High-Temperature Processing, Metall. Mater. Trans. A, 2015, 46, p 5467–5475
7.
Zurück zum Zitat Y. Ci and Z.Z. Zhang, Simulation Study on Heat-Affected Zone of High-Strain X80 Pipeline Steel, J. Iron. Steel Res. Int., 2017, 24, p 966–972 Y. Ci and Z.Z. Zhang, Simulation Study on Heat-Affected Zone of High-Strain X80 Pipeline Steel, J. Iron. Steel Res. Int., 2017, 24, p 966–972
8.
Zurück zum Zitat A.M. Guo, S.R. Li, J. Guo et al., Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel, Mater. Charact., 2008, 59, p 134–139 A.M. Guo, S.R. Li, J. Guo et al., Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel, Mater. Charact., 2008, 59, p 134–139
9.
Zurück zum Zitat X.D. Li, X.P. Ma, S. Subramanian et al., Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa High Strength Linepipe Steel, Mater. Sci. Eng., A, 2014, 616, p 141–147 X.D. Li, X.P. Ma, S. Subramanian et al., Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa High Strength Linepipe Steel, Mater. Sci. Eng., A, 2014, 616, p 141–147
10.
Zurück zum Zitat H. Yang, X.X. Wang, and J.B. Qu, Effect of Boron on CGHAZ Microstructure and Toughness of High Strength Low Alloy Steels, J. Iron. Steel Res. Int., 2014, 21, p 787–792 H. Yang, X.X. Wang, and J.B. Qu, Effect of Boron on CGHAZ Microstructure and Toughness of High Strength Low Alloy Steels, J. Iron. Steel Res. Int., 2014, 21, p 787–792
11.
Zurück zum Zitat C. Liu, Z.B. Zhao, and D.O. Northwood, Mechanical Properties of Heat Affected Zone in Bainitic High Strength Low Alloy Steel, Mater. Sci. Technol., 2002, 18, p 1325–1328 C. Liu, Z.B. Zhao, and D.O. Northwood, Mechanical Properties of Heat Affected Zone in Bainitic High Strength Low Alloy Steel, Mater. Sci. Technol., 2002, 18, p 1325–1328
12.
Zurück zum Zitat E. Bonnevie, G. Ferrière, A. Ikhlef et al., Morphological Aspects of Martensite-Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358 E. Bonnevie, G. Ferrière, A. Ikhlef et al., Morphological Aspects of Martensite-Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358
13.
Zurück zum Zitat S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini, Role of Tandem Submerged Arc Welding Thermal Cycles on Properties of the Heat Affected Zone in X80 Microalloyed Pipe Line Steel, J. Mater. Process. Technol., 2011, 211, p 368–375 S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini, Role of Tandem Submerged Arc Welding Thermal Cycles on Properties of the Heat Affected Zone in X80 Microalloyed Pipe Line Steel, J. Mater. Process. Technol., 2011, 211, p 368–375
14.
Zurück zum Zitat S.D. Bhale and J. Billingham, Effect of Heat Input on HAZ Toughness in HSLA Steels, Met. Technol., 1983, 10, p 1363–1367 S.D. Bhale and J. Billingham, Effect of Heat Input on HAZ Toughness in HSLA Steels, Met. Technol., 1983, 10, p 1363–1367
15.
Zurück zum Zitat Y. Shen, J. Leng, and C. Wang, On the Heterogeneous Microstructure Development in the Welded Joint of 12MnNiVR Pressure Vessel Steel Subjected to High Heat Input Electrogas Welding, J. Mater. Sci. Technol., 2019, 35, p 1747–1752 Y. Shen, J. Leng, and C. Wang, On the Heterogeneous Microstructure Development in the Welded Joint of 12MnNiVR Pressure Vessel Steel Subjected to High Heat Input Electrogas Welding, J. Mater. Sci. Technol., 2019, 35, p 1747–1752
16.
Zurück zum Zitat B. Cui, Y. Peng, L. Zhao et al., Effect of Heat Input on Microstructure and Toughness of Coarse Grained HAZ of Q890 Steel, Iron Steel Inst. Japan Int., 2016, 56, p 132–139 B. Cui, Y. Peng, L. Zhao et al., Effect of Heat Input on Microstructure and Toughness of Coarse Grained HAZ of Q890 Steel, Iron Steel Inst. Japan Int., 2016, 56, p 132–139
17.
Zurück zum Zitat J. Hu, L.X. Du, J.J. Wang et al., Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng., A, 2013, 577, p 161–168 J. Hu, L.X. Du, J.J. Wang et al., Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng., A, 2013, 577, p 161–168
18.
Zurück zum Zitat L. Lan, C. Qiu, D. Zhao et al., Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2011, 529, p 192–200 L. Lan, C. Qiu, D. Zhao et al., Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2011, 529, p 192–200
19.
Zurück zum Zitat J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals, Elsevier, Amsterdam, 2014 J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals, Elsevier, Amsterdam, 2014
20.
Zurück zum Zitat K. Ohya, J. Kim, K. Yokoyama et al., Microstructures Relevant to Brittle Fracture Initiation at the Heat-Affected Zone of Weldment of a Low Carbon Steel, Metall. Mater. Trans. A, 1996, 27, p 2574–2582 K. Ohya, J. Kim, K. Yokoyama et al., Microstructures Relevant to Brittle Fracture Initiation at the Heat-Affected Zone of Weldment of a Low Carbon Steel, Metall. Mater. Trans. A, 1996, 27, p 2574–2582
21.
Zurück zum Zitat A.E. Amer, M.Y. Koo, K.H. Lee et al., Effect of Welding Heat Input on Microstructure and Mechanical Properties of Simulated HAZ in Cu Containing Microalloyed Steel, J. Mater. Sci., 2010, 45, p 1248–1254 A.E. Amer, M.Y. Koo, K.H. Lee et al., Effect of Welding Heat Input on Microstructure and Mechanical Properties of Simulated HAZ in Cu Containing Microalloyed Steel, J. Mater. Sci., 2010, 45, p 1248–1254
22.
Zurück zum Zitat X.L. Wang, X.M. Wang, C.J. Shang et al., Characterization of the Multi-pass Weld Metal and the Impact of Retained Austenite Obtained Through Intercritical Heat Treatment on Low Temperature Toughness, Mater. Sci. Eng., A, 2016, 649, p 282–292 X.L. Wang, X.M. Wang, C.J. Shang et al., Characterization of the Multi-pass Weld Metal and the Impact of Retained Austenite Obtained Through Intercritical Heat Treatment on Low Temperature Toughness, Mater. Sci. Eng., A, 2016, 649, p 282–292
23.
Zurück zum Zitat P. Mohseni, J.K. Solberg, M. Karlsen et al., Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268 P. Mohseni, J.K. Solberg, M. Karlsen et al., Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268
24.
Zurück zum Zitat C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat-Affected Zone: Part I. Fractographic Evidence, Metall. Mater. Trans. A, 1994, 25, p 563–573 C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat-Affected Zone: Part I. Fractographic Evidence, Metall. Mater. Trans. A, 1994, 25, p 563–573
25.
Zurück zum Zitat C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat Affected Zone: Part II. Failure Criteria and Statistical Effects, Metall. Mater. Trans. A, 1996, 27, p 3019–3029 C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat Affected Zone: Part II. Failure Criteria and Statistical Effects, Metall. Mater. Trans. A, 1996, 27, p 3019–3029
26.
Zurück zum Zitat X.C. Yang, X.J. Di, X.G. Liu et al., Effects of Heat Input on Microstructure and Fracture Toughness of Simulated Coarse-Grained Heat Affected Zone for HSLA Steels, Mater. Charact., 2019, 155, p 109818 X.C. Yang, X.J. Di, X.G. Liu et al., Effects of Heat Input on Microstructure and Fracture Toughness of Simulated Coarse-Grained Heat Affected Zone for HSLA Steels, Mater. Charact., 2019, 155, p 109818
27.
Zurück zum Zitat L. Lan, C. Qiu, D. Zhao et al., Analysis of Martensite–Austenite Constituent and Its Effect on Toughness in Submerged Arc Welded Joint of Low Carbon Bainitic Steel, J. Mater. Sci., 2012, 47, p 4732–4742 L. Lan, C. Qiu, D. Zhao et al., Analysis of Martensite–Austenite Constituent and Its Effect on Toughness in Submerged Arc Welded Joint of Low Carbon Bainitic Steel, J. Mater. Sci., 2012, 47, p 4732–4742
28.
Zurück zum Zitat Y. Shi and Z. Han, Effect of Weld Thermal Cycle on Microstructure and Fracture Toughness of Simulated Heat-Affected Zone for a 800 MPa Grade High Strength Low Alloy Steel, J. Mater. Process. Technol., 2008, 207, p 30–39 Y. Shi and Z. Han, Effect of Weld Thermal Cycle on Microstructure and Fracture Toughness of Simulated Heat-Affected Zone for a 800 MPa Grade High Strength Low Alloy Steel, J. Mater. Process. Technol., 2008, 207, p 30–39
29.
Zurück zum Zitat S. Kim, D. Kang, T. Kim et al., Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338 S. Kim, D. Kang, T. Kim et al., Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338
30.
Zurück zum Zitat C. Qiu, L. Lan, D. Zhao et al., Microstructural evolution and toughness in the HAZ of submerged arc welded low welding crack susceptibility steel, Acta Metallu. Sin. Engl. Lett., 2013, 26, p 49–55 C. Qiu, L. Lan, D. Zhao et al., Microstructural evolution and toughness in the HAZ of submerged arc welded low welding crack susceptibility steel, Acta Metallu. Sin. Engl. Lett., 2013, 26, p 49–55
31.
Zurück zum Zitat J. Hu, L. Du, H. Xie et al., Effect of Weld Peak Temperature on the Microstructure, Hardness, Transformation Kinetics of Simulated Heat Affected Zone of Hot Rolled Ultra-low Carbon High Strength Ti–Mo Ferritic Steel, Mater. Des., 2014, 60, p 302–309 J. Hu, L. Du, H. Xie et al., Effect of Weld Peak Temperature on the Microstructure, Hardness, Transformation Kinetics of Simulated Heat Affected Zone of Hot Rolled Ultra-low Carbon High Strength Ti–Mo Ferritic Steel, Mater. Des., 2014, 60, p 302–309
32.
Zurück zum Zitat H.F. Lan, L.X. Du, and R.D.K. Misra, Effect of Microstructural Constituents on Strength–Toughness Combination in a Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2014, 611, p 194–200 H.F. Lan, L.X. Du, and R.D.K. Misra, Effect of Microstructural Constituents on Strength–Toughness Combination in a Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2014, 611, p 194–200
33.
Zurück zum Zitat Z. Zhu, J. Han, H. Li et al., High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174 Z. Zhu, J. Han, H. Li et al., High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174
34.
Zurück zum Zitat J.H. Chen, Y. Kikuta, T. Araki et al., Micro-fracture Behaviour Induced by M–A Constituent (Island Martensite) in Simulated Welding Heat Affected Zone of HT80 High Strength Low Alloyed Steel, Acta Metall., 1984, 32, p 1779–1788 J.H. Chen, Y. Kikuta, T. Araki et al., Micro-fracture Behaviour Induced by M–A Constituent (Island Martensite) in Simulated Welding Heat Affected Zone of HT80 High Strength Low Alloyed Steel, Acta Metall., 1984, 32, p 1779–1788
35.
Zurück zum Zitat C. Li, Y. Wang, T. Han et al., Microstructure and Toughness of Coarse Grain Heat-Affected Zone of Domestic X70 Pipeline Steel during In-Service Welding, J. Mater. Sci., 2011, 46, p 727–733 C. Li, Y. Wang, T. Han et al., Microstructure and Toughness of Coarse Grain Heat-Affected Zone of Domestic X70 Pipeline Steel during In-Service Welding, J. Mater. Sci., 2011, 46, p 727–733
36.
Zurück zum Zitat E. Bayraktar and D. Kaplan, Mechanical and Metallurgical Investigation of Martensite–Austenite Constituents in Simulated Welding Conditions, J. Mater. Process. Technol., 2004, 153, p 87–92 E. Bayraktar and D. Kaplan, Mechanical and Metallurgical Investigation of Martensite–Austenite Constituents in Simulated Welding Conditions, J. Mater. Process. Technol., 2004, 153, p 87–92
37.
Zurück zum Zitat R.M. Alé, J.M.A. Rebello, and J. Charlier, A Metallographic Technique for Detecting Martensite–Austenite Constituents in the Weld Heat-Affected Zone of a Micro-alloyed Steel, Mater. Charact., 1996, 37, p 89–93 R.M. Alé, J.M.A. Rebello, and J. Charlier, A Metallographic Technique for Detecting Martensite–Austenite Constituents in the Weld Heat-Affected Zone of a Micro-alloyed Steel, Mater. Charact., 1996, 37, p 89–93
38.
Zurück zum Zitat A. Lambert and J. Drillet, Microstructure of Martensite–Austenite Constituents in Heat Affected Zones of High Strength Low Alloy Steel Welds in Relation to Toughness Properties, Sci. Technol. Weld. Join., 2000, 5, p 168–173 A. Lambert and J. Drillet, Microstructure of Martensite–Austenite Constituents in Heat Affected Zones of High Strength Low Alloy Steel Welds in Relation to Toughness Properties, Sci. Technol. Weld. Join., 2000, 5, p 168–173
39.
Zurück zum Zitat X.L. Wang, Y.R. Nan, Z.J. Xie et al., Influence of Welding Pass on Microstructure and Toughness in the Reheated Zone of Multi-pass Weld Metal of 550 MPa Offshore Engineering Steel, Mater. Sci. Eng., A, 2017, 702, p 196–205 X.L. Wang, Y.R. Nan, Z.J. Xie et al., Influence of Welding Pass on Microstructure and Toughness in the Reheated Zone of Multi-pass Weld Metal of 550 MPa Offshore Engineering Steel, Mater. Sci. Eng., A, 2017, 702, p 196–205
40.
Zurück zum Zitat X. Li, Y. Fan, X. Ma et al., Influence of Martensite–Austenite Constituents Formed at Different Intercritical Temperatures on Toughness, Mater. Des., 2015, 67, p 457–463 X. Li, Y. Fan, X. Ma et al., Influence of Martensite–Austenite Constituents Formed at Different Intercritical Temperatures on Toughness, Mater. Des., 2015, 67, p 457–463
41.
Zurück zum Zitat G.L. Seok, S.S. Seok, K. Bohee et al., Effects of Martensite–Austenite Constituent on Crack Initiation and Propagation in Inter-critical Heat-Affected Zone of High-Strength Low-Alloy (HSLA) Steel, Mater. Sci. Eng., A, 2018, 715, p 332–339 G.L. Seok, S.S. Seok, K. Bohee et al., Effects of Martensite–Austenite Constituent on Crack Initiation and Propagation in Inter-critical Heat-Affected Zone of High-Strength Low-Alloy (HSLA) Steel, Mater. Sci. Eng., A, 2018, 715, p 332–339
42.
Zurück zum Zitat O.M. Akselsen, Q. Grong, and J.K. Solberg, Effects of M-A Islands on Intercritical HAZ Low Carbon Microalloyed Steels, Scand. J. Metall., 1988, 17, p 194–200 O.M. Akselsen, Q. Grong, and J.K. Solberg, Effects of M-A Islands on Intercritical HAZ Low Carbon Microalloyed Steels, Scand. J. Metall., 1988, 17, p 194–200
43.
Zurück zum Zitat H.M. Flower and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40 H.M. Flower and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40
44.
Zurück zum Zitat J. Nohava, P. Hausild, M. KarliK et al., Electron Backscattering Diffraction Analysis of Secondary Cleavage Cracks in a Reactor Pressure Vessel Steel, Mater. Charact., 2002, 49, p 211–217 J. Nohava, P. Hausild, M. KarliK et al., Electron Backscattering Diffraction Analysis of Secondary Cleavage Cracks in a Reactor Pressure Vessel Steel, Mater. Charact., 2002, 49, p 211–217
45.
Zurück zum Zitat M. Dáz-Fuentes, A. Iza-Mendia, and I. Gutiérrez, Analysis of Different Acicular Ferrite Microstructures in Low-Carbon Steels by Electron Backscattered Diffraction Study of Their Toughness Behavior, Metall. Mater. Trans. A, 2003, 34, p 2505–2516 M. Dáz-Fuentes, A. Iza-Mendia, and I. Gutiérrez, Analysis of Different Acicular Ferrite Microstructures in Low-Carbon Steels by Electron Backscattered Diffraction Study of Their Toughness Behavior, Metall. Mater. Trans. A, 2003, 34, p 2505–2516
46.
Zurück zum Zitat Y. You, C. Shang, N.W. Jin et al., Investigation on the Microstructure and Toughness of Coarse Grained Heat Affected Zone in X-100 Multi-phase Pipeline Steel with High Nb Content, Mater. Sci. Eng., A, 2012, 558, p 692–701 Y. You, C. Shang, N.W. Jin et al., Investigation on the Microstructure and Toughness of Coarse Grained Heat Affected Zone in X-100 Multi-phase Pipeline Steel with High Nb Content, Mater. Sci. Eng., A, 2012, 558, p 692–701
47.
Zurück zum Zitat R. Cao, X.B. Zhang, Z. Wang et al., Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal, Metall. Mater. Trans. A, 2014, 45, p 815–834 R. Cao, X.B. Zhang, Z. Wang et al., Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal, Metall. Mater. Trans. A, 2014, 45, p 815–834
48.
Zurück zum Zitat D.S. Liu, M. Luo, B.G. Cheng et al., Microstructural Evolution and Ductile-to-Brittle Transition in a Low-Carbon MnCrMoNiCu Heavy Plate Steel, Metall. Mater. Trans. A, 2018, 49, p 4918–4936 D.S. Liu, M. Luo, B.G. Cheng et al., Microstructural Evolution and Ductile-to-Brittle Transition in a Low-Carbon MnCrMoNiCu Heavy Plate Steel, Metall. Mater. Trans. A, 2018, 49, p 4918–4936
49.
Zurück zum Zitat P.S. Zhou, B. Wang, L. Wang et al., Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng., A, 2018, 4, p 112–121 P.S. Zhou, B. Wang, L. Wang et al., Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng., A, 2018, 4, p 112–121
50.
Zurück zum Zitat R. Cao, J. Li, D.S. Liu et al., Micromechanism of Decrease of Impact Toughness in Coarse Grain HAZ of HSLA Steel with Increasing Welding Heat Input, Metall. Mater. Trans. A, 2015, 46, p 2999–3014 R. Cao, J. Li, D.S. Liu et al., Micromechanism of Decrease of Impact Toughness in Coarse Grain HAZ of HSLA Steel with Increasing Welding Heat Input, Metall. Mater. Trans. A, 2015, 46, p 2999–3014
51.
Zurück zum Zitat X.C. Li, J.X. Zhao, J.L. Wang et al., Effect of boundaries on toughness in high-strength low-alloy steels from the view of crystallographic misorientation, Mater. Lett., 2019, 259, p 126841 X.C. Li, J.X. Zhao, J.L. Wang et al., Effect of boundaries on toughness in high-strength low-alloy steels from the view of crystallographic misorientation, Mater. Lett., 2019, 259, p 126841
52.
Zurück zum Zitat Y. Zhao, X. Tong, X.H. Wei et al., Effects of Microstructure on Crack Resistance and Low-Temperature Toughness of Ultra-low Carbon High Strength Steel, Int. J. Plast, 2019, 116, p 203–215 Y. Zhao, X. Tong, X.H. Wei et al., Effects of Microstructure on Crack Resistance and Low-Temperature Toughness of Ultra-low Carbon High Strength Steel, Int. J. Plast, 2019, 116, p 203–215
Metadaten
Titel
Effect of Peak Temperature on Microstructure and Mechanical Properties of Thermally Simulated Welding Heat-Affected Zones for 09MnNiDR Steel
verfasst von
Rui Cao
Zhaoqing Yang
Jinmei Li
Xiaowu Liang
Wanqing Lei
Jianxiao Zhang
Jianhong Chen
Publikationsdatum
14.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05154-5

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.