Skip to main content
Erschienen in: Journal of Polymer Research 1/2017

01.12.2016 | ORIGINAL PAPER

Effect of polymer matrix and nanofiller on non-bonding interfacial properties of nanocomposites

verfasst von: Xiong Qi-lin, Tian Xin

Erschienen in: Journal of Polymer Research | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To investigate the effect of polymer matrix and nanofiller on interfacial mechanical properties of their resulting nanoreinforced composites, pull-out tests of different nanofillers, such as graphene (GE), graphane (GA) and carbon nanotube (CNT), from various polymer matrix including polyethylene (PE), poly(methyl methacrylate) (PMMA), polytetrafluoroethylene (PTFE) and poly(vinylidene chloride) (PVDC), are simulated using molecular dynamics method (MD). The velocity-load model is applied in MD simulations, and the variation of non-bonding energy (van der Waals interaction), pull force and the average interfacial shear strength (ISS) in the pull-out process are obtained and presented graphically. Under the same mass density, when PE is used as polymer matrix for GE and CNT nanofillers, the resulting nanoreinforced composite possesses the highest non-bonding interfacial energy and the strongest ISS, and the pull force required for pulling out the nanofiller is the largest. For GA nanofiller, the GA-PMMA produces the highest non-bonding interfacial energy and the ISS. With the increase of diameter of CNT, the effect of its reinforcement becomes weak gradually. The chirality of GE does not influence the interfacial mechanical property of GE-reinforced nanocomposite. The (3, 3) CNT nanofiller produces the almost identical interfacial characteristic compared with GE nanofiller. However, when the GA nanofiller is used, the non-bonding energy, pull force and the average ISS of nanocomposite increases by nearly 100%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frankland SJV, Harik VM (2003) Analysis of carbon nanotube pull-out from a polymer matrix[J]. Surf Sci 525(1):L103–L108CrossRef Frankland SJV, Harik VM (2003) Analysis of carbon nanotube pull-out from a polymer matrix[J]. Surf Sci 525(1):L103–L108CrossRef
2.
Zurück zum Zitat Gou J, Minaie B, Wang B, et al. (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J]. Comput Mater Sci 31(3):225–236CrossRef Gou J, Minaie B, Wang B, et al. (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J]. Comput Mater Sci 31(3):225–236CrossRef
3.
Zurück zum Zitat Zheng Q, Xue Q, Yan K, et al. (2008) Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube–polymer composites[J]. Polymer 49(3):800–808CrossRef Zheng Q, Xue Q, Yan K, et al. (2008) Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube–polymer composites[J]. Polymer 49(3):800–808CrossRef
4.
Zurück zum Zitat Li Y, Liu Y, Peng X, et al. (2011) Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites[J]. Comput Mater Sci 50(6):1854–1860CrossRef Li Y, Liu Y, Peng X, et al. (2011) Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites[J]. Comput Mater Sci 50(6):1854–1860CrossRef
5.
Zurück zum Zitat Xiong QL, Meguid SA, Wang Y, et al. (2015) Molecular dynamics and atomistic based continuum studies of the interfacial behavior of nanoreinforced epoxy[J]. Mech Mater 85:38–46CrossRef Xiong QL, Meguid SA, Wang Y, et al. (2015) Molecular dynamics and atomistic based continuum studies of the interfacial behavior of nanoreinforced epoxy[J]. Mech Mater 85:38–46CrossRef
6.
Zurück zum Zitat Xiong QL, Meguid SA (2015) Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite[J]. Eur Polym J 69:1–15CrossRef Xiong QL, Meguid SA (2015) Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite[J]. Eur Polym J 69:1–15CrossRef
7.
Zurück zum Zitat Awasthi AP, Lagoudas DC, Hammerand DC (2008) Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics[J]. Model Simul Mater Sci Eng 17(1):015002CrossRef Awasthi AP, Lagoudas DC, Hammerand DC (2008) Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics[J]. Model Simul Mater Sci Eng 17(1):015002CrossRef
8.
Zurück zum Zitat Lv C, Xue Q, Xia D, et al. (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene − polymer composites[J]. J Phys Chem C 114(14):6588–6594CrossRef Lv C, Xue Q, Xia D, et al. (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene − polymer composites[J]. J Phys Chem C 114(14):6588–6594CrossRef
9.
Zurück zum Zitat Ebrahimi S, Montazeri A, Rafii-Tabar H (2013) Molecular dynamics study of the interfacial mechanical properties of the graphene–collagen biological nanocomposite[J]. Comput Mater Sci 69:29–39CrossRef Ebrahimi S, Montazeri A, Rafii-Tabar H (2013) Molecular dynamics study of the interfacial mechanical properties of the graphene–collagen biological nanocomposite[J]. Comput Mater Sci 69:29–39CrossRef
10.
Zurück zum Zitat Wang MC, Lai ZB, Galpaya D, et al. (2014) Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites[J]. J Appl Phys 115(12):123520CrossRef Wang MC, Lai ZB, Galpaya D, et al. (2014) Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites[J]. J Appl Phys 115(12):123520CrossRef
11.
Zurück zum Zitat Liu F, Hu N, Ning H, et al. (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene[J]. Comput Mater Sci 108:160–167CrossRef Liu F, Hu N, Ning H, et al. (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene[J]. Comput Mater Sci 108:160–167CrossRef
12.
Zurück zum Zitat Rafiee MA, Rafiee J, Wang Z, et al. (2009) Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano 3(12):3884–3890CrossRef Rafiee MA, Rafiee J, Wang Z, et al. (2009) Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano 3(12):3884–3890CrossRef
13.
Zurück zum Zitat Ryu S, Han MY, Maultzsch J, et al. (2008) Reversible basal plane hydrogenation of graphene[J]. Nano Lett 8(12):4597–4602CrossRef Ryu S, Han MY, Maultzsch J, et al. (2008) Reversible basal plane hydrogenation of graphene[J]. Nano Lett 8(12):4597–4602CrossRef
14.
Zurück zum Zitat Sun H, Mumby SJ, Maple JR, et al. (1994) An ab initio CFF93 all-atom force field for polycarbonates[J]. J Am Chem Soc 116(7):2978–2987CrossRef Sun H, Mumby SJ, Maple JR, et al. (1994) An ab initio CFF93 all-atom force field for polycarbonates[J]. J Am Chem Soc 116(7):2978–2987CrossRef
15.
Zurück zum Zitat Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites[J]. Comput Mater Sci 39(2):315–323CrossRef Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites[J]. Comput Mater Sci 39(2):315–323CrossRef
16.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys 117(1):1–19CrossRef
17.
Zurück zum Zitat Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Model Simul Mater Sci Eng 18(1):015012CrossRef Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Model Simul Mater Sci Eng 18(1):015012CrossRef
18.
Zurück zum Zitat Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions[J]. Phys Rev A 31(3):1695CrossRef Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions[J]. Phys Rev A 31(3):1695CrossRef
19.
Zurück zum Zitat Hu N, Fukunaga H, Lu C, et al. (2005) Prediction of elastic properties of carbon nanotube reinforced composites[C]. Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences. The Royal Society 461(2058):1685–1710CrossRef Hu N, Fukunaga H, Lu C, et al. (2005) Prediction of elastic properties of carbon nanotube reinforced composites[C]. Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences. The Royal Society 461(2058):1685–1710CrossRef
20.
Zurück zum Zitat Li C, Chou TW (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites[J]. Compos Sci Technol 66(14):2409–2414CrossRef Li C, Chou TW (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites[J]. Compos Sci Technol 66(14):2409–2414CrossRef
21.
Zurück zum Zitat Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system[J]. Appl Phys Lett 79(25):4225–4227CrossRef Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system[J]. Appl Phys Lett 79(25):4225–4227CrossRef
Metadaten
Titel
Effect of polymer matrix and nanofiller on non-bonding interfacial properties of nanocomposites
verfasst von
Xiong Qi-lin
Tian Xin
Publikationsdatum
01.12.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 1/2017
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1181-4

Weitere Artikel der Ausgabe 1/2017

Journal of Polymer Research 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.