Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2023

23.05.2023 | Original Paper

Effect of quaternary basicity on reduction behavior of iron-bearing dust pellets

verfasst von: Tao Yang, Jing-shu An, Xing-wang Li, Shuang Liu, Xu Gao, Lei Ma, Jie Lei, Hong-ming Long

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The treatment of iron-bearing dusts and sludges by the rotary hearth furnace process has the advantage of sufficient utilization of valuable metals and a high impurity removal rate, but the lower strength of the metallized product needs to be addressed. The effects of quaternary basicity R4 (w(CaO + MgO)/w(SiO2 + Al2O3)) on the reduction behavior and physical and chemical properties of metallized pellets, including phase composition, compressive strength, microstructure and soft melting area, were investigated with FactSage thermodynamic software and experiments. The strength of metallized pellets depended on the gangue composition, such as CaO, MgO, Al2O3 and SiO2, due to the altered chemical composition, physical phase composition, microscopic morphology and stability of the slag phase. The reduction of carbon-bearing pellets was significantly promoted by suitable basicity. The lower basicity (R4 < 1.4) facilitated the formation of low melting point iron-containing compounds from SiO2 and Al2O3 with FeO, resulting in increased liquid phase generation, but lower metallization rate, due to the hindered precipitation and growth of iron grains. Interestingly, the higher basicity (R4 > 1.8) also increased the amount of liquid phase and improved the strength of the pellets, due to the granular iron crystals bonded into sheets. Notably, the main component of the liquid phase in high-basicity conditions was calcium ferrite. Although the additional amount of liquid phase was beneficial to the strength of the metallized pellets, calcium disilicate was formed at R4 = 1.6, resulting in a reduction in the compressive strength of the pellets to 1521.9 N/pellet.
Literatur
[1]
Zurück zum Zitat L.K. Hong, J.J. Gao, Y.H. Qi, H.F. Wang, J. Iron Steel Res. 30 (2018) 703–709. L.K. Hong, J.J. Gao, Y.H. Qi, H.F. Wang, J. Iron Steel Res. 30 (2018) 703–709.
[2]
Zurück zum Zitat C. Geng, H.J. Wang, W.T. Hu, L. Li, C.S. Shi, J. Iron Steel Res. Int. 24 (2017) 991–997.CrossRef C. Geng, H.J. Wang, W.T. Hu, L. Li, C.S. Shi, J. Iron Steel Res. Int. 24 (2017) 991–997.CrossRef
[3]
Zurück zum Zitat L.X. Qian, T. Yang, H.M. Long, L. Ding, C.C. Xu, ACS Sustainable Chem. Eng. 9 (2021) 16373–16383.CrossRef L.X. Qian, T. Yang, H.M. Long, L. Ding, C.C. Xu, ACS Sustainable Chem. Eng. 9 (2021) 16373–16383.CrossRef
[4]
Zurück zum Zitat J.S. Wang, Y. Li, H.X. Feng, Q.G. Xue, X.F. She, G. Wang, H.B. Zuo, Chin. J. Eng. 43 (2021) 1737–1749. J.S. Wang, Y. Li, H.X. Feng, Q.G. Xue, X.F. She, G. Wang, H.B. Zuo, Chin. J. Eng. 43 (2021) 1737–1749.
[5]
Zurück zum Zitat L. Ding, Y.F. Wang, L.X. Qian, P.Y. Qi, X. Meng, H.M. Long, Fuel 338 (2023) 127268.CrossRef L. Ding, Y.F. Wang, L.X. Qian, P.Y. Qi, X. Meng, H.M. Long, Fuel 338 (2023) 127268.CrossRef
[6]
Zurück zum Zitat W. Lv, M. Gan, X.H. Fan, Z.Y. Ji, X.L. Chen, J.W. Yao, T. Jiang, JOM 71 (2019) 3173–3180.CrossRef W. Lv, M. Gan, X.H. Fan, Z.Y. Ji, X.L. Chen, J.W. Yao, T. Jiang, JOM 71 (2019) 3173–3180.CrossRef
[7]
Zurück zum Zitat Z. Chen, R.Q. Zheng, D.C. Ju, R. Mao, H. Ma, H.B. Peng, W.T. Du, J. Sustain. Metall. 8 (2022) 1001–1013.CrossRef Z. Chen, R.Q. Zheng, D.C. Ju, R. Mao, H. Ma, H.B. Peng, W.T. Du, J. Sustain. Metall. 8 (2022) 1001–1013.CrossRef
[8]
[9]
Zurück zum Zitat Y. Li, H.X. Feng, J.S. Wang, X.F. She, G. Wang, H.B. Zuo, Q.G. Xue, J. Clean. Prod. 367 (2022) 132909.CrossRef Y. Li, H.X. Feng, J.S. Wang, X.F. She, G. Wang, H.B. Zuo, Q.G. Xue, J. Clean. Prod. 367 (2022) 132909.CrossRef
[10]
Zurück zum Zitat J.X. Zhang, C. Yang, F.S. Niu, S.L. Gao, J.J. Dong, Minerals 11 (2021) 1080.CrossRef J.X. Zhang, C. Yang, F.S. Niu, S.L. Gao, J.J. Dong, Minerals 11 (2021) 1080.CrossRef
[11]
Zurück zum Zitat J.X. Zhang, W.G. Sun, F.S. Niu, L. Wang, Y.W. Zhao, M.M. Han, Int. J. Heat Technol. 36 (2018) 229–236.CrossRef J.X. Zhang, W.G. Sun, F.S. Niu, L. Wang, Y.W. Zhao, M.M. Han, Int. J. Heat Technol. 36 (2018) 229–236.CrossRef
[12]
[13]
Zurück zum Zitat Y.D. Xie, W.L. Xiong, J.X. Yu, J.Q. Tang, R.A. Chi, Process Saf. Environ. Prot. 116 (2018) 340–346.CrossRef Y.D. Xie, W.L. Xiong, J.X. Yu, J.Q. Tang, R.A. Chi, Process Saf. Environ. Prot. 116 (2018) 340–346.CrossRef
[14]
Zurück zum Zitat C. Sierra, J. Martínez, J.M. Menéndez-Aguado, E. Afif, J.R. Gallego, J. Hazard. Mater. 248–249 (2013) 194–201.CrossRef C. Sierra, J. Martínez, J.M. Menéndez-Aguado, E. Afif, J.R. Gallego, J. Hazard. Mater. 248–249 (2013) 194–201.CrossRef
[16]
Zurück zum Zitat A. Andersson, H. Ahmed, J. Rosenkranz, C. Samuelsson, B. Björkman, ISIJ Int. 57 (2017) 262–271.CrossRef A. Andersson, H. Ahmed, J. Rosenkranz, C. Samuelsson, B. Björkman, ISIJ Int. 57 (2017) 262–271.CrossRef
[17]
Zurück zum Zitat D.J.C. Stewart, A.R. Barron, Resour. Conserv. Recycl. 157 (2020) 104746.CrossRef D.J.C. Stewart, A.R. Barron, Resour. Conserv. Recycl. 157 (2020) 104746.CrossRef
[18]
Zurück zum Zitat M.H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metall. Sect. B 48 (2012) 173–184.CrossRef M.H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metall. Sect. B 48 (2012) 173–184.CrossRef
[19]
Zurück zum Zitat D.Q. Zhu, D.Z. Wang, J. Pan, H.Y. Tian, Y.X. Xue, Powder Technol. 380 (2021) 273–281.CrossRef D.Q. Zhu, D.Z. Wang, J. Pan, H.Y. Tian, Y.X. Xue, Powder Technol. 380 (2021) 273–281.CrossRef
[20]
Zurück zum Zitat D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, H.Y. Tian, Y.X. Xue, J. Iron Steel Res. Int. 29 (2022) 1559–1572.CrossRef D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, H.Y. Tian, Y.X. Xue, J. Iron Steel Res. Int. 29 (2022) 1559–1572.CrossRef
[21]
Zurück zum Zitat D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, C.C. Yang, X. Wang, T. Dong, JOM 74 (2022) 634–643.CrossRef D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, C.C. Yang, X. Wang, T. Dong, JOM 74 (2022) 634–643.CrossRef
[22]
Zurück zum Zitat X.F. She, J.S. Wang, G. Wang, Q.G. Xue, X.X. Zhang, J. Iron Steel Res. Int. 21 (2014) 488–495.CrossRef X.F. She, J.S. Wang, G. Wang, Q.G. Xue, X.X. Zhang, J. Iron Steel Res. Int. 21 (2014) 488–495.CrossRef
[23]
Zurück zum Zitat X. Xiao, S.F. Zhang, F. Sher, J.B. Chen, Y.T. Xin, Z.X. You, L.Y. Wen, M.L. Hu, G.B. Qiu, J. Sustain. Metall. 7 (2021) 340–357.CrossRef X. Xiao, S.F. Zhang, F. Sher, J.B. Chen, Y.T. Xin, Z.X. You, L.Y. Wen, M.L. Hu, G.B. Qiu, J. Sustain. Metall. 7 (2021) 340–357.CrossRef
[25]
[26]
Zurück zum Zitat R. Mao, F. Wang, H. Jin, S.D. Mao, Iron and Steel 55 (2020) No. 8, 199–205. R. Mao, F. Wang, H. Jin, S.D. Mao, Iron and Steel 55 (2020) No. 8, 199–205.
[27]
Zurück zum Zitat C. Peng, J.F. Fan, Iron and Steel 54 (2019) No. 2, 97–100. C. Peng, J.F. Fan, Iron and Steel 54 (2019) No. 2, 97–100.
[28]
Zurück zum Zitat E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, J. Hou, J. Iron Steel Res. Int. 23 (2016) 655–660.CrossRef E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, J. Hou, J. Iron Steel Res. Int. 23 (2016) 655–660.CrossRef
[29]
Zurück zum Zitat R. Mao, L.Q. Ren, P. Du, F. Wang, J. Iron Steel Res. 29 (2017) 357–363. R. Mao, L.Q. Ren, P. Du, F. Wang, J. Iron Steel Res. 29 (2017) 357–363.
[30]
Zurück zum Zitat H.Y. He, H.L. Liu, Y.F. Cui, Y. Li, J. Ding, J. Iron Steel Res. 33 (2021) 196–201. H.Y. He, H.L. Liu, Y.F. Cui, Y. Li, J. Ding, J. Iron Steel Res. 33 (2021) 196–201.
[31]
[32]
Zurück zum Zitat S. Li, Z.S. Kang, W.C. Liu, Y.C. Lian, H.S. Yang, J. Sustain. Metall. 7 (2021) 126–135.CrossRef S. Li, Z.S. Kang, W.C. Liu, Y.C. Lian, H.S. Yang, J. Sustain. Metall. 7 (2021) 126–135.CrossRef
[33]
Zurück zum Zitat S.F. Zhou, H.Y. Zheng, Y. Dong, X. Jiang, Q.J. Gao, M.F. Shen, Iron and Steel 56 (2021) No. 6, 15–20+27. S.F. Zhou, H.Y. Zheng, Y. Dong, X. Jiang, Q.J. Gao, M.F. Shen, Iron and Steel 56 (2021) No. 6, 15–20+27.
[34]
Zurück zum Zitat W. Chen, X. Wang, Y. Lei, Y. Li, S.Q. He, Z.H. Liao, Iron and Steel 55 (2020) No. 9, 11–15. W. Chen, X. Wang, Y. Lei, Y. Li, S.Q. He, Z.H. Liao, Iron and Steel 55 (2020) No. 9, 11–15.
[35]
[36]
[37]
Zurück zum Zitat R.F. Wei, J.X. Li, J.M. Li, H.M. Long, P. Wang, G. Gao, G.P. Lin, Chin. J. Process Eng. 11 (2011) 429–435. R.F. Wei, J.X. Li, J.M. Li, H.M. Long, P. Wang, G. Gao, G.P. Lin, Chin. J. Process Eng. 11 (2011) 429–435.
[38]
Zurück zum Zitat Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) 28–33.CrossRef Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) 28–33.CrossRef
[39]
Zurück zum Zitat J. Ding, H.Y. He, Z.Y. Tang, Y. Li, H.L. Liu, J. Wuhan Univ. Sci. Technol. 44 (2021) 7–12. J. Ding, H.Y. He, Z.Y. Tang, Y. Li, H.L. Liu, J. Wuhan Univ. Sci. Technol. 44 (2021) 7–12.
[40]
Zurück zum Zitat Y.S. Lee, D.W. Ri, S.H. Yi, I. Sohn, ISIJ Int. 52 (2012) 1454–1462.CrossRef Y.S. Lee, D.W. Ri, S.H. Yi, I. Sohn, ISIJ Int. 52 (2012) 1454–1462.CrossRef
[41]
Zurück zum Zitat H.C. Chuang, W.S. Hwang, S.H. Liu, Mater. Trans. 50 (2009) 1448–1456.CrossRef H.C. Chuang, W.S. Hwang, S.H. Liu, Mater. Trans. 50 (2009) 1448–1456.CrossRef
[42]
Zurück zum Zitat Q.M. Meng, J.X. Li, R.F. Wei, H.M. Long, T.J. Chun, P. Wang, Z.X. Di, L. Dessbesell, C.B. Xu, J. Iron Steel Res. Int. 25 (2018) 1105–1112.CrossRef Q.M. Meng, J.X. Li, R.F. Wei, H.M. Long, T.J. Chun, P. Wang, Z.X. Di, L. Dessbesell, C.B. Xu, J. Iron Steel Res. Int. 25 (2018) 1105–1112.CrossRef
[43]
[44]
Zurück zum Zitat D.C. Fan, W. Ni, A.Y. Yan, J.Y. Wang, W.H. Cui, J. Iron Steel Res. Int. 22 (2015) 686–693.CrossRef D.C. Fan, W. Ni, A.Y. Yan, J.Y. Wang, W.H. Cui, J. Iron Steel Res. Int. 22 (2015) 686–693.CrossRef
[45]
Zurück zum Zitat E.H. Wu, J. Hou, J. Li, L. Ma, S.L. Yang, Iron and Steel 53 (2018) No. 1, 24–28. E.H. Wu, J. Hou, J. Li, L. Ma, S.L. Yang, Iron and Steel 53 (2018) No. 1, 24–28.
[46]
Zurück zum Zitat S. Zhang, W. Ren, J.L. Li, X.F. Zhang, Metall. Res. Technol. 114 (2017) 101.CrossRef S. Zhang, W. Ren, J.L. Li, X.F. Zhang, Metall. Res. Technol. 114 (2017) 101.CrossRef
[47]
Zurück zum Zitat J. Li, H.F. An, W.X. Liu, A.M. Yang, M.S. Chu, J. Iron Steel Res. Int. 27 (2020) 239–247.CrossRef J. Li, H.F. An, W.X. Liu, A.M. Yang, M.S. Chu, J. Iron Steel Res. Int. 27 (2020) 239–247.CrossRef
[48]
Zurück zum Zitat H.Y. Yu, X.L. Pan, B.W. Liu, B. Wang, S.W. Bi, J. Iron Steel Res. Int. 21 (2014) 990–994.CrossRef H.Y. Yu, X.L. Pan, B.W. Liu, B. Wang, S.W. Bi, J. Iron Steel Res. Int. 21 (2014) 990–994.CrossRef
[49]
Zurück zum Zitat S. Ferreira, A. Cores, J.I. Robla, L.F. Verdeja, I. Ruiz-Bustinza, F. García-Carcedo, J. Mochon, Steel Res. Int. 85 (2014) 261–272.CrossRef S. Ferreira, A. Cores, J.I. Robla, L.F. Verdeja, I. Ruiz-Bustinza, F. García-Carcedo, J. Mochon, Steel Res. Int. 85 (2014) 261–272.CrossRef
[50]
Zurück zum Zitat Y.X. Zhao, Z.X. Zhang, J.Y. Zhang, F.P. Yue, J.S. Wang, G. Wang, Sinter. Pelletiz. 42 (2017) No. 4, 19–22+53. Y.X. Zhao, Z.X. Zhang, J.Y. Zhang, F.P. Yue, J.S. Wang, G. Wang, Sinter. Pelletiz. 42 (2017) No. 4, 19–22+53.
[51]
Metadaten
Titel
Effect of quaternary basicity on reduction behavior of iron-bearing dust pellets
verfasst von
Tao Yang
Jing-shu An
Xing-wang Li
Shuang Liu
Xu Gao
Lei Ma
Jie Lei
Hong-ming Long
Publikationsdatum
23.05.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00985-7

Weitere Artikel der Ausgabe 7/2023

Journal of Iron and Steel Research International 7/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.