Skip to main content
Erschienen in: Journal of Materials Science 17/2018

29.05.2018 | Composites

Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix

verfasst von: Ekaterina A. Mikhaleva, Igor N. Flerov, Andrey V. Kartashev, Mikhail V. Gorev, Maxim S. Molokeev, Evgeniy V. Bogdanov, Vitaliy S. Bondarev, Leonid N. Korotkov, Ewa Rysiakiewicz-Pasek

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A study of heat capacity, thermal dilatation, susceptibility to hydrostatic pressure, permittivity and polarization loops was carried out on NH4HSO4–porous glass nanocomposites (AHS + PG) as well as empty glass matrices. The formation of dendrite clusters of AHS with a size, dcryst, exceeding the pore size was found. An insignificant anisotropy of thermal expansion of AHS + PG showing statistically uniform distribution of AHS with random orientations of nanocrystallites over the matrix was observed. The effect of internal and external pressures on thermal properties and permittivity was studied. At the phase transition P-1 ↔ Pc, a strongly nonlinear decrease in the entropy ΔS2 and volume strain (ΔV/V)T2 was observed with decreasing dcryst. The linear change in temperatures of both phase transitions P-1 ↔ Pc ↔ P21/c under hydrostatic pressure is accompanied by the expansion of the temperature range of existence of the ferroelectric phase Pc, while this interval narrows as dcryst decreases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Yu (2003) Dielectric relaxation in porous glasses. Micropor Mesopor Mater 58:237–254CrossRef Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Yu (2003) Dielectric relaxation in porous glasses. Micropor Mesopor Mater 58:237–254CrossRef
2.
Zurück zum Zitat Kumzerov Y, Vakhrushev S (2007) Nanostructures within porous materials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York, pp 1–39 Kumzerov Y, Vakhrushev S (2007) Nanostructures within porous materials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York, pp 1–39
3.
Zurück zum Zitat Longo E, La Porta FA (eds) (2017) Recent advances in complex functional materials from design to application. Springer, Berlin Longo E, La Porta FA (eds) (2017) Recent advances in complex functional materials from design to application. Springer, Berlin
4.
Zurück zum Zitat Naberezhnov AA, Ryukhtin V, Sysoeva AA (2017) Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites. Phys Solid State 59:378–384CrossRef Naberezhnov AA, Ryukhtin V, Sysoeva AA (2017) Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites. Phys Solid State 59:378–384CrossRef
5.
Zurück zum Zitat Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SSK, Polu AR, Al Maadeed MA-A, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27–31CrossRef Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SSK, Polu AR, Al Maadeed MA-A, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27–31CrossRef
6.
Zurück zum Zitat Komalavalli P, Banu I (2018) Enhanced room temperature multiferroic properties of nickel ferrite and lithium niobate nanocomposites. J Mater Sci: Mater Electron 29:3980–3984 Komalavalli P, Banu I (2018) Enhanced room temperature multiferroic properties of nickel ferrite and lithium niobate nanocomposites. J Mater Sci: Mater Electron 29:3980–3984
7.
Zurück zum Zitat Ciżman A, Bednarski W, Antropova TV, Pshenko O, Rysiakiewicz-Pasek E, Waplak S, Poprawski R (2014) Structural, dielectric, thermal and electron magnetic resonance studies of magnetic porous glasses filled with ferroelectrics. Composites Part B 64:16–23CrossRef Ciżman A, Bednarski W, Antropova TV, Pshenko O, Rysiakiewicz-Pasek E, Waplak S, Poprawski R (2014) Structural, dielectric, thermal and electron magnetic resonance studies of magnetic porous glasses filled with ferroelectrics. Composites Part B 64:16–23CrossRef
8.
Zurück zum Zitat Pshenko OA, Drozdova IA, Polyakova IG, Rogacki K, Ciżman A, Poprawski R, Rysiakiewicz-Pasek E, Antropova TV (2014) Ferromagnetic iron containing porous glasses. Glass Phys Chem 40:167–172CrossRef Pshenko OA, Drozdova IA, Polyakova IG, Rogacki K, Ciżman A, Poprawski R, Rysiakiewicz-Pasek E, Antropova TV (2014) Ferromagnetic iron containing porous glasses. Glass Phys Chem 40:167–172CrossRef
9.
Zurück zum Zitat Belov AN, Kislova IL, Loktev DV, Redichev EN, Stroganov AA, Solnyshkin AV (2018) Electrical characterization of poly(vinylidene fluoride-trifluoroethylene) nanocrystals embedded in porous alumina matrix. J Adv Dielectr 8:1820001CrossRef Belov AN, Kislova IL, Loktev DV, Redichev EN, Stroganov AA, Solnyshkin AV (2018) Electrical characterization of poly(vinylidene fluoride-trifluoroethylene) nanocrystals embedded in porous alumina matrix. J Adv Dielectr 8:1820001CrossRef
10.
Zurück zum Zitat Milovidova SD, Sidorkin AS, Rogazinskaya OV, Vorotnikov EV (2016) Dielectric properties of the mixed nanocomposites: triglycine sulfate–silica. Ferroelectrics 497:69–73CrossRef Milovidova SD, Sidorkin AS, Rogazinskaya OV, Vorotnikov EV (2016) Dielectric properties of the mixed nanocomposites: triglycine sulfate–silica. Ferroelectrics 497:69–73CrossRef
11.
Zurück zum Zitat Kinka M, Banys J, Naberezhnov A (2007) Dielectric properties of sodium nitrite confined in porous glass. Ferroelectrics 348:67–74CrossRef Kinka M, Banys J, Naberezhnov A (2007) Dielectric properties of sodium nitrite confined in porous glass. Ferroelectrics 348:67–74CrossRef
12.
Zurück zum Zitat Fokin A, Kumzerov Yu, Koroleva E, Naberezhnov A, Smirnov O, Tovar M, Vakhrushev S, Glazman M (2009) Ferroelectric phase transitions in sodium nitrite nanocomposites. J Electroceram 22:270–275CrossRef Fokin A, Kumzerov Yu, Koroleva E, Naberezhnov A, Smirnov O, Tovar M, Vakhrushev S, Glazman M (2009) Ferroelectric phase transitions in sodium nitrite nanocomposites. J Electroceram 22:270–275CrossRef
13.
Zurück zum Zitat Rogazinskaya OV, Milovidova SD, Sidorkin AS, Popravko NG, Bosykh MA, Enshina VS (2010) Dielectric properties of ferroelectric composites with TGS inclusions. Ferroelectrics 397:191–197CrossRef Rogazinskaya OV, Milovidova SD, Sidorkin AS, Popravko NG, Bosykh MA, Enshina VS (2010) Dielectric properties of ferroelectric composites with TGS inclusions. Ferroelectrics 397:191–197CrossRef
14.
Zurück zum Zitat Tarnavich V, Korotkov L, Karaeva O, Naberezhnov A, Rysiakiewicz-Pasek E (2010) Effect of restricted geometry on structural phase transitions in KH2PO4 and NH4H2PO4 crystals. Opt Appl 40:305–309 Tarnavich V, Korotkov L, Karaeva O, Naberezhnov A, Rysiakiewicz-Pasek E (2010) Effect of restricted geometry on structural phase transitions in KH2PO4 and NH4H2PO4 crystals. Opt Appl 40:305–309
15.
Zurück zum Zitat Rogazinsksya OV, Sidorkin AS, Milovidova SD, Naberezhnov AA, Matveev NN, Popravko NG, Fokin AV (2010) Ferroelectricity in nanocomposites based on porous glass with inclusions of NaNO2. Bull Russ Acad Sci Phys 75:1327–1330CrossRef Rogazinsksya OV, Sidorkin AS, Milovidova SD, Naberezhnov AA, Matveev NN, Popravko NG, Fokin AV (2010) Ferroelectricity in nanocomposites based on porous glass with inclusions of NaNO2. Bull Russ Acad Sci Phys 75:1327–1330CrossRef
16.
Zurück zum Zitat Cizman A, Antropova T, Anfimova I, Drozdova I, Rysiakiewicz-Pasek E, Radojewska EB, Poprawski R (2013) Size driven ferroelectric–paraelectric phase transition in TGS nanocomposites. J Nanopart Res 15:1807CrossRef Cizman A, Antropova T, Anfimova I, Drozdova I, Rysiakiewicz-Pasek E, Radojewska EB, Poprawski R (2013) Size driven ferroelectric–paraelectric phase transition in TGS nanocomposites. J Nanopart Res 15:1807CrossRef
17.
Zurück zum Zitat Cizman A, Marciniszyn T, Enke D, Barascu A, Poprawski R (2013) Phase transition in NH4HSO4–porous glasses nanocomposites. J Nanopart Res 15:1756CrossRef Cizman A, Marciniszyn T, Enke D, Barascu A, Poprawski R (2013) Phase transition in NH4HSO4–porous glasses nanocomposites. J Nanopart Res 15:1756CrossRef
18.
Zurück zum Zitat Baryshnikov SV, Milinskiy AYu, Charnaya EV, Bugaev AS, Samoylovich MI (2016) Dielectric studies of ferroelectric NH4HSO4 nanoparticles embedded into porous matrices. Ferroelectrics 493:85–92CrossRef Baryshnikov SV, Milinskiy AYu, Charnaya EV, Bugaev AS, Samoylovich MI (2016) Dielectric studies of ferroelectric NH4HSO4 nanoparticles embedded into porous matrices. Ferroelectrics 493:85–92CrossRef
19.
Zurück zum Zitat Rysiakiewicz-Pasek E, Ciżman A, Drozdova I, Polyakova I, Antropova T (2016) Synthesis, structure and properties of mixed KNO3–NaNO3 embedded into nanoporous silica glasses. Compos Part B Eng 91:291–295CrossRef Rysiakiewicz-Pasek E, Ciżman A, Drozdova I, Polyakova I, Antropova T (2016) Synthesis, structure and properties of mixed KNO3–NaNO3 embedded into nanoporous silica glasses. Compos Part B Eng 91:291–295CrossRef
20.
Zurück zum Zitat Kutnjak Z, Vodopivec B, Blinc R, Fokin AV, Kumzerov YA, Vakhrushev SB (2005) Calorimetric and dielectric studies of ferroelectric sodium nitrite confined in a nanoscale porous glass matrix. J Chem Phys 123:084708CrossRef Kutnjak Z, Vodopivec B, Blinc R, Fokin AV, Kumzerov YA, Vakhrushev SB (2005) Calorimetric and dielectric studies of ferroelectric sodium nitrite confined in a nanoscale porous glass matrix. J Chem Phys 123:084708CrossRef
21.
Zurück zum Zitat Rysiakiewicz-Pasek E, Poprawski R, Polanska J, Urbanowicz A, Sieradzki A (2006) Properties of porous glasses with embedded ferroelectric materials. J Non Cryst Solids 352:4309–4314CrossRef Rysiakiewicz-Pasek E, Poprawski R, Polanska J, Urbanowicz A, Sieradzki A (2006) Properties of porous glasses with embedded ferroelectric materials. J Non Cryst Solids 352:4309–4314CrossRef
22.
Zurück zum Zitat Kumzerov Y, Kartenko NF, Parfen’eva LS, Smirnov IA, Fokin AV, Wlosewicz D, Misiorek H, Jezowski A (2011) Capacity and thermal conductivity of a nanocomposite chrysolite asbestos–KDP (KH2PO4). Phys Solid State 53:1099–1103CrossRef Kumzerov Y, Kartenko NF, Parfen’eva LS, Smirnov IA, Fokin AV, Wlosewicz D, Misiorek H, Jezowski A (2011) Capacity and thermal conductivity of a nanocomposite chrysolite asbestos–KDP (KH2PO4). Phys Solid State 53:1099–1103CrossRef
23.
Zurück zum Zitat Cizman A, Marciniszyn T, Poprawski R (2012) Pressure effect on the ferroelectric phase transition in nanosized NH4HSO4. J Appl Phys 112:034104CrossRef Cizman A, Marciniszyn T, Poprawski R (2012) Pressure effect on the ferroelectric phase transition in nanosized NH4HSO4. J Appl Phys 112:034104CrossRef
24.
Zurück zum Zitat San-Miguel A (2006) Nanomaterials under high-pressure. Chem Soc Rev 35:876–889CrossRef San-Miguel A (2006) Nanomaterials under high-pressure. Chem Soc Rev 35:876–889CrossRef
25.
Zurück zum Zitat Pepinsky R, Vedam K, Okaya YS, Hosino S (1958) Ammonium hydrogen sulfate: a new ferroelectric with low coercive field. Phys Rev 111:1508–1510CrossRef Pepinsky R, Vedam K, Okaya YS, Hosino S (1958) Ammonium hydrogen sulfate: a new ferroelectric with low coercive field. Phys Rev 111:1508–1510CrossRef
26.
Zurück zum Zitat Flerov IN, Zinenko VI, Zherebtsova LI, Iskornev IM, Blat DCh (1975) Study of phase transitions in ammonium hydrosulfate. Izvestiya AN USSR (seriya fizicheskaya) 39:752–757 Flerov IN, Zinenko VI, Zherebtsova LI, Iskornev IM, Blat DCh (1975) Study of phase transitions in ammonium hydrosulfate. Izvestiya AN USSR (seriya fizicheskaya) 39:752–757
27.
Zurück zum Zitat Swain D, Bhadram VS, Chowdhury P, Narayana C (2012) Raman and X-ray investigations of ferroelectric phase transition in NH4HSO4. J Phys Chem A 116:223–230CrossRef Swain D, Bhadram VS, Chowdhury P, Narayana C (2012) Raman and X-ray investigations of ferroelectric phase transition in NH4HSO4. J Phys Chem A 116:223–230CrossRef
28.
Zurück zum Zitat Mikhaleva EA, Flerov IN, Bondarev VS, Gorev MV, Vasiliev AD, Davydova TN (2011) Phase transitions and caloric effects in ferroelectric solid solutions of ammonium and rubidium hydrosulfates. Phys Solid State 53:510–517CrossRef Mikhaleva EA, Flerov IN, Bondarev VS, Gorev MV, Vasiliev AD, Davydova TN (2011) Phase transitions and caloric effects in ferroelectric solid solutions of ammonium and rubidium hydrosulfates. Phys Solid State 53:510–517CrossRef
29.
Zurück zum Zitat Mikhaleva EA, Flerov IN, Kartashev AV, Gorev MV, Bogdanov EV, Bondarev VS (2017) Thermal, dielectric and barocaloric properties of NH4HSO4 crystallized from an aqueous solution and the melt. Solid State Sci 67:1–7CrossRef Mikhaleva EA, Flerov IN, Kartashev AV, Gorev MV, Bogdanov EV, Bondarev VS (2017) Thermal, dielectric and barocaloric properties of NH4HSO4 crystallized from an aqueous solution and the melt. Solid State Sci 67:1–7CrossRef
30.
Zurück zum Zitat Kosova DA, Emelina AL, Bykov MA (2014) Phase transitions of some sulfur-containing ammonium salts. Thermochim Acta 595:61–66CrossRef Kosova DA, Emelina AL, Bykov MA (2014) Phase transitions of some sulfur-containing ammonium salts. Thermochim Acta 595:61–66CrossRef
31.
Zurück zum Zitat Bruker AXS TOPAS V4 (2008) General profile and structure analysis software for powder diffraction data—user’s manual. Bruker AXS, Karlsruhe Bruker AXS TOPAS V4 (2008) General profile and structure analysis software for powder diffraction data—user’s manual. Bruker AXS, Karlsruhe
32.
Zurück zum Zitat Rysiakiewicz-Pasek E, Popravski R, Urbanowicz A, Maczka M (2005) Porous glasses with sodium nitrite impregnations. Opt Appl 35:769–774 Rysiakiewicz-Pasek E, Popravski R, Urbanowicz A, Maczka M (2005) Porous glasses with sodium nitrite impregnations. Opt Appl 35:769–774
33.
Zurück zum Zitat Kartashev AV, Flerov IN, Volkov NV, Sablina KA (2008) Adiabatic calorimetric study of the intense magnetocaloric effect and the heat capacity of (La0.4Eu0.6)0.7Pb0.3MnO3. Phys Solid State 50:2115–2120CrossRef Kartashev AV, Flerov IN, Volkov NV, Sablina KA (2008) Adiabatic calorimetric study of the intense magnetocaloric effect and the heat capacity of (La0.4Eu0.6)0.7Pb0.3MnO3. Phys Solid State 50:2115–2120CrossRef
34.
Zurück zum Zitat Shimizu H, Abe N, Yasuda N, Fujimoto S, Sawada S, Shiroishi Y (1979) Differential thermal analysis using a Ge–Ag thermocouple under hydrostatic pressure: phase behavior of {N(CH3)4}2MnCl4. Jpn J Appl Phys 18:857–858CrossRef Shimizu H, Abe N, Yasuda N, Fujimoto S, Sawada S, Shiroishi Y (1979) Differential thermal analysis using a Ge–Ag thermocouple under hydrostatic pressure: phase behavior of {N(CH3)4}2MnCl4. Jpn J Appl Phys 18:857–858CrossRef
35.
Zurück zum Zitat Iskornev IM, Flerov IN (1978) Thermal expansion of ferroelectric crystals of the ammonium hydrosulfate family. Fizika Tverdogo Tela 20:2649–2653 Iskornev IM, Flerov IN (1978) Thermal expansion of ferroelectric crystals of the ammonium hydrosulfate family. Fizika Tverdogo Tela 20:2649–2653
36.
Zurück zum Zitat Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and related materials (international series of monographs on physics). Oxford University Press, Oxford Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and related materials (international series of monographs on physics). Oxford University Press, Oxford
37.
Zurück zum Zitat Flerov IN, Mikhaleva EA (2008) Electrocaloric effect and anomalous conductivity of the ferroelectric NH4HSO4. Phys Solid State 50:478–484CrossRef Flerov IN, Mikhaleva EA (2008) Electrocaloric effect and anomalous conductivity of the ferroelectric NH4HSO4. Phys Solid State 50:478–484CrossRef
38.
Zurück zum Zitat Polandov IN, Mylov VP, Strukov BA (1969) About p–T phase diagram of ferroelectric crystal NH4HSO4. Sov Phys Solid State 10:1754–1756 Polandov IN, Mylov VP, Strukov BA (1969) About p–T phase diagram of ferroelectric crystal NH4HSO4. Sov Phys Solid State 10:1754–1756
39.
Zurück zum Zitat Miller R, Blinc R, Brenman M, Waugh JS (1962) Nuclear spin-lattice relaxation in some ferroelectric ammonium salts. Phys Rev 126:528–532CrossRef Miller R, Blinc R, Brenman M, Waugh JS (1962) Nuclear spin-lattice relaxation in some ferroelectric ammonium salts. Phys Rev 126:528–532CrossRef
40.
Zurück zum Zitat Nelmes RJ (1971) An X-ray diffraction determination of the crystal structure of ammonium hydrosulfate above the ferroelectric transition. Acta Crystallogr B 27:272–281CrossRef Nelmes RJ (1971) An X-ray diffraction determination of the crystal structure of ammonium hydrosulfate above the ferroelectric transition. Acta Crystallogr B 27:272–281CrossRef
41.
Zurück zum Zitat Nelmes RJ (1972) The structure of ammonium hydrogen sulfate in its ferroelectric phase and the ferroelectric transition. Ferroelectrics 4:133–140CrossRef Nelmes RJ (1972) The structure of ammonium hydrogen sulfate in its ferroelectric phase and the ferroelectric transition. Ferroelectrics 4:133–140CrossRef
42.
Zurück zum Zitat Kretschmar R, Binder K (1979) Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys Rev B 20:1065–1076CrossRef Kretschmar R, Binder K (1979) Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys Rev B 20:1065–1076CrossRef
43.
Zurück zum Zitat Tilley DR, Zeks B (1984) Landau theory of phase transitions in thick films. Solid State Commun 49:823–828CrossRef Tilley DR, Zeks B (1984) Landau theory of phase transitions in thick films. Solid State Commun 49:823–828CrossRef
44.
Zurück zum Zitat Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B 37:5852–5855CrossRef Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B 37:5852–5855CrossRef
Metadaten
Titel
Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix
verfasst von
Ekaterina A. Mikhaleva
Igor N. Flerov
Andrey V. Kartashev
Mikhail V. Gorev
Maxim S. Molokeev
Evgeniy V. Bogdanov
Vitaliy S. Bondarev
Leonid N. Korotkov
Ewa Rysiakiewicz-Pasek
Publikationsdatum
29.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2467-1

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.