Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

26.10.2018

Effect of Saline Atmosphere on the Mechanical Properties of Commercial Steel Wire

verfasst von: Lakhindra Marandi, Indrani Sen

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of saline solution on the mechanical performance of a commercially available galvanized stainless steel wire is studied in detail. Stainless steel of a grade primarily used for automotive applications is used for this study. The investigation is important, especially for considering applications where such wire is subjected to a saline environment. 3.5 pct NaCl solution which replicates seawater composition is used. The quasistatic and fatigue strengths, ductility as well as hardness, and elastic modulus are systematically characterized for the galvanized stainless steel wire pre-immersed in this saline solution. In essence, the role of surface as well as bulk conditions of a material along with the presence of corrosive media in affecting its properties is thoroughly investigated. The results show that pre-immersing the galvanized wire in saline media for a limited time duration of one day produces a protective oxide layer on the surface. This surface layer enhances the resistance of the steel wire against further corrosion. Consequently, the fatigue strength of the material, primarily depending on its surface conditions, improves. On the other hand, the cross-sectional microstructure, protected by the corrosion-resistant outer shell, remains unaffected. The quasistatic strength is also controlled by the bulk of the specimen and therefore varies only nominally. Nanoindentation on the cross-section of the wire reveals no significant changes in the hardness and elastic modulus values as well. This study highlights that optimally pre-immersing in a saline solution improves the fatigue resistance of the galvanized stainless steel wire at the expense of only nominal variations in its tensile properties, hardness, and elastic modulus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Bagnoli, L. Allegrucci, M. Colavita, and M. Bernabei: Eng. Fail. Anal., 2009, vol. 16, pp. 1404–1411.CrossRef F. Bagnoli, L. Allegrucci, M. Colavita, and M. Bernabei: Eng. Fail. Anal., 2009, vol. 16, pp. 1404–1411.CrossRef
2.
Zurück zum Zitat J.L. Gbur and J.J. Lewandowski: Int. Mater. Rev., 2016, vol. 61, pp. 231–314.CrossRef J.L. Gbur and J.J. Lewandowski: Int. Mater. Rev., 2016, vol. 61, pp. 231–314.CrossRef
3.
Zurück zum Zitat C. Xu, H. Xiao, S. Zou, and R. Zeng: Procedia Eng., 2017, vol. 174, pp. 385–391.CrossRef C. Xu, H. Xiao, S. Zou, and R. Zeng: Procedia Eng., 2017, vol. 174, pp. 385–391.CrossRef
4.
Zurück zum Zitat S. M. Shelton and W. H. Swanger: J. Res. Natl. Bur. Stand. vol. 14, pp. 17–32, 1935.CrossRef S. M. Shelton and W. H. Swanger: J. Res. Natl. Bur. Stand. vol. 14, pp. 17–32, 1935.CrossRef
5.
Zurück zum Zitat E.K. Ioakeimidis, V.N. Kytopoulos, and E. Hristoforou: Mater. Sci. Eng. A, 2013, vol. 583, pp. 254–260.CrossRef E.K. Ioakeimidis, V.N. Kytopoulos, and E. Hristoforou: Mater. Sci. Eng. A, 2013, vol. 583, pp. 254–260.CrossRef
6.
Zurück zum Zitat W. Tian, N. Du, S. Li, S. Chen, and Q. Wu: Corros. Sci., 2014, vol. 85, pp. 372–379.CrossRef W. Tian, N. Du, S. Li, S. Chen, and Q. Wu: Corros. Sci., 2014, vol. 85, pp. 372–379.CrossRef
7.
Zurück zum Zitat A. R. Ranji and Z. A. H.: J. Nav. Archit. Mar. Eng., 2010, vol. 7, pp. 93–100. A. R. Ranji and Z. A. H.: J. Nav. Archit. Mar. Eng., 2010, vol. 7, pp. 93–100.
8.
Zurück zum Zitat I. Diaz, H. Cano, D. De Fuente, B. Chico, J.M. Vega, and M. Morcillo: Corros. Sci., 2013, vol. 76, pp. 348–360.CrossRef I. Diaz, H. Cano, D. De Fuente, B. Chico, J.M. Vega, and M. Morcillo: Corros. Sci., 2013, vol. 76, pp. 348–360.CrossRef
9.
Zurück zum Zitat N. Michailidis, F. Stergioudi, G. Maliaris, and A. Tsouknidas: Surf. Coatings Technol., 2014, vol. 259, pp. 456–464.CrossRef N. Michailidis, F. Stergioudi, G. Maliaris, and A. Tsouknidas: Surf. Coatings Technol., 2014, vol. 259, pp. 456–464.CrossRef
10.
Zurück zum Zitat R. Autengruber, G. Luckeneder, and A.W. Hassel: Corros. Sci., 2012, vol. 63, pp. 12–19.CrossRef R. Autengruber, G. Luckeneder, and A.W. Hassel: Corros. Sci., 2012, vol. 63, pp. 12–19.CrossRef
11.
12.
Zurück zum Zitat M. Bruneau and S.M. Zahrai: J. Struct. Eng., 1997, vol. 123, pp. 1478–1476.CrossRef M. Bruneau and S.M. Zahrai: J. Struct. Eng., 1997, vol. 123, pp. 1478–1476.CrossRef
13.
Zurück zum Zitat M. Okayasu, K. Sato, K. Okada, S. Yoshifuji, and M. Mizuno: J. Mater. Sci., 2009, vol. 44, pp. 306–315.CrossRef M. Okayasu, K. Sato, K. Okada, S. Yoshifuji, and M. Mizuno: J. Mater. Sci., 2009, vol. 44, pp. 306–315.CrossRef
14.
Zurück zum Zitat J. Kocich, J. Sevcikova, and S. Tuleja: Corros. Sci., 1993, vol. 35, pp. 719–725.CrossRef J. Kocich, J. Sevcikova, and S. Tuleja: Corros. Sci., 1993, vol. 35, pp. 719–725.CrossRef
15.
Zurück zum Zitat J.H. Jiang, A.B. Ma, W.F. Weng, G.H. Fu, Y.F. Zhang, G.G. Liu, and F.M. Lu: Fatigue Fract. Eng. Mater. Struct., 2009, vol. 32, pp. 769–779.CrossRef J.H. Jiang, A.B. Ma, W.F. Weng, G.H. Fu, Y.F. Zhang, G.G. Liu, and F.M. Lu: Fatigue Fract. Eng. Mater. Struct., 2009, vol. 32, pp. 769–779.CrossRef
16.
Zurück zum Zitat H.J. Godfrey: Trans. Amer. Soc. Met., 1941, vol. 29, pp. 133–168. H.J. Godfrey: Trans. Amer. Soc. Met., 1941, vol. 29, pp. 133–168.
17.
Zurück zum Zitat H. Sun, S. Liu, and L. Sun: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3494–3509. H. Sun, S. Liu, and L. Sun: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3494–3509.
18.
Zurück zum Zitat F. Berto and O. Fergani: Int. J. Fatigue, 2017, vol. 101, pp. 439–447.CrossRef F. Berto and O. Fergani: Int. J. Fatigue, 2017, vol. 101, pp. 439–447.CrossRef
19.
Zurück zum Zitat F. Berto, S.M.J. Razavi, M.R. Ayatollahi, and F. Mutignani: Procedia Struct. Integr., 2017, vol. 3, pp. 77–84.CrossRef F. Berto, S.M.J. Razavi, M.R. Ayatollahi, and F. Mutignani: Procedia Struct. Integr., 2017, vol. 3, pp. 77–84.CrossRef
20.
Zurück zum Zitat F. Berto, F. Mutignani, and L. Pittarello: Procedia Struct. Integr., 2016, vol. 2, pp. 1813–1820.CrossRef F. Berto, F. Mutignani, and L. Pittarello: Procedia Struct. Integr., 2016, vol. 2, pp. 1813–1820.CrossRef
21.
Zurück zum Zitat Y. Bergengren and A. Melander: Int. J. Fatigue, 1992, vol. 14, pp. 154–62.CrossRef Y. Bergengren and A. Melander: Int. J. Fatigue, 1992, vol. 14, pp. 154–62.CrossRef
22.
Zurück zum Zitat K. Lambrighs, I. Verpoest, B. Verlinden, and M. Wevers: Procedia Eng., 2010, vol. 2, pp. 173–181.CrossRef K. Lambrighs, I. Verpoest, B. Verlinden, and M. Wevers: Procedia Eng., 2010, vol. 2, pp. 173–181.CrossRef
23.
Zurück zum Zitat M.C. Li, S.D. Wang, R.Y. Ma, P.H. Han, and H.Y. Bi: J. Solid State Electrochem., 2012, vol. 16, pp. 3059–3067.CrossRef M.C. Li, S.D. Wang, R.Y. Ma, P.H. Han, and H.Y. Bi: J. Solid State Electrochem., 2012, vol. 16, pp. 3059–3067.CrossRef
24.
Zurück zum Zitat S. Anttila, P. Karjalainen, and S. Lantto: Weld. World, 2013, vol. 57, pp. 335–347. S. Anttila, P. Karjalainen, and S. Lantto: Weld. World, 2013, vol. 57, pp. 335–347.
26.
Zurück zum Zitat I. Sen, E. Amankwah, N.S. Kumar, E. Fleury, K. Oh-ishi, K. Hono, and U. Ramamurty: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4491–4499.CrossRef I. Sen, E. Amankwah, N.S. Kumar, E. Fleury, K. Oh-ishi, K. Hono, and U. Ramamurty: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4491–4499.CrossRef
27.
Zurück zum Zitat K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, and U. Ramamurty: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4600–4604.CrossRef K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, and U. Ramamurty: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4600–4604.CrossRef
28.
Zurück zum Zitat D.J. Carmo, J.F. Dias, and D.B. Santos: Mater. Sci. Technol., 2012, vol. 28, pp. 991–993.CrossRef D.J. Carmo, J.F. Dias, and D.B. Santos: Mater. Sci. Technol., 2012, vol. 28, pp. 991–993.CrossRef
29.
Zurück zum Zitat Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–830.CrossRef Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–830.CrossRef
30.
Zurück zum Zitat J. Petit and F. Lorenzi: Procedia Eng., 2010, vol. 2, pp. 2317–2326.CrossRef J. Petit and F. Lorenzi: Procedia Eng., 2010, vol. 2, pp. 2317–2326.CrossRef
31.
Zurück zum Zitat S. Dhinakaran and R. V Prakash: Mater. Sci. Eng. A, 2014, vol. 609, pp. 204–208.CrossRef S. Dhinakaran and R. V Prakash: Mater. Sci. Eng. A, 2014, vol. 609, pp. 204–208.CrossRef
32.
Zurück zum Zitat I. Sen, H. Jirková, B. Mašek, M. Böhme, and M.F.-X. Wagner: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3034–3038.CrossRef I. Sen, H. Jirková, B. Mašek, M. Böhme, and M.F.-X. Wagner: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3034–3038.CrossRef
33.
Zurück zum Zitat M. Curioni, P. Skeldon, and G.E. Thompson: Electrochim. Acta, 2013, vol. 105, pp. 642–53.CrossRef M. Curioni, P. Skeldon, and G.E. Thompson: Electrochim. Acta, 2013, vol. 105, pp. 642–53.CrossRef
34.
Zurück zum Zitat Z.A. Hamid, S.S.A. El Rehim, A.A. Shama, and M. Ebrahim: J. Surf. Eng. Mater. Adv. Technol., 2016, vol. 6, pp. 58–71. Z.A. Hamid, S.S.A. El Rehim, A.A. Shama, and M. Ebrahim: J. Surf. Eng. Mater. Adv. Technol., 2016, vol. 6, pp. 58–71.
37.
Zurück zum Zitat M.G. Fontana: Corrosion Engineering, Third Edit., Tata McGraw Hill, 2005. M.G. Fontana: Corrosion Engineering, Third Edit., Tata McGraw Hill, 2005.
38.
Zurück zum Zitat M.E. Mitzithra, F. Deby, J.P. Balayssac, and J. Salin: Nucl. Eng. Des., 2015, vol. 288, pp. 42–55.CrossRef M.E. Mitzithra, F. Deby, J.P. Balayssac, and J. Salin: Nucl. Eng. Des., 2015, vol. 288, pp. 42–55.CrossRef
39.
Zurück zum Zitat Linear Polariz. Resist. Corros. Rate, Theory Background, Doc. DRA 10086 (REV002/APR 2016), 2016, vol. 10086, pp. 1–14. Linear Polariz. Resist. Corros. Rate, Theory Background, Doc. DRA 10086 (REV002/APR 2016), 2016, vol. 10086, pp. 1–14.
40.
Zurück zum Zitat G.E. Badea, A. Caraban, M. Sebesan, S. Dzitac, P. Cret, and A. Setel: J. Sustain. Energy, 2010, vol. 1, pp. 1–4. G.E. Badea, A. Caraban, M. Sebesan, S. Dzitac, P. Cret, and A. Setel: J. Sustain. Energy, 2010, vol. 1, pp. 1–4.
41.
Zurück zum Zitat M. Stern and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104, pp. 56–53.CrossRef M. Stern and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104, pp. 56–53.CrossRef
42.
Zurück zum Zitat A.C. Fischer-Cripps: in Mech. Eng. Ser. F.F. Ling, ed., Springer, New York (2009). A.C. Fischer-Cripps: in Mech. Eng. Ser. F.F. Ling, ed., Springer, New York (2009).
43.
Zurück zum Zitat Q. Kan, W. Yan, G. Kang, and Q. Sun: J. Mech. Phys. Solids, 2015, vol. 61, pp. 2015–2033.CrossRef Q. Kan, W. Yan, G. Kang, and Q. Sun: J. Mech. Phys. Solids, 2015, vol. 61, pp. 2015–2033.CrossRef
44.
Zurück zum Zitat I. Sen, S. Roy, and M.F.X. Wagner: Adv. Eng. Mater., 2017, vol. 19, pp. 1–12.CrossRef I. Sen, S. Roy, and M.F.X. Wagner: Adv. Eng. Mater., 2017, vol. 19, pp. 1–12.CrossRef
50.
Zurück zum Zitat V. Molnár, G. Fedorko, J. Krešák, P. Peterka, and J. Fabianová: Eng. Fail. Anal., 2017, vol. 74, pp. 119–132.CrossRef V. Molnár, G. Fedorko, J. Krešák, P. Peterka, and J. Fabianová: Eng. Fail. Anal., 2017, vol. 74, pp. 119–132.CrossRef
51.
Zurück zum Zitat P. Zhang, S.X. Li, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 529, pp. 62–73.CrossRef P. Zhang, S.X. Li, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 529, pp. 62–73.CrossRef
52.
Zurück zum Zitat W.D. Nix and H.J. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–425.CrossRef W.D. Nix and H.J. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–425.CrossRef
53.
Zurück zum Zitat I. Sen, K. Gopinath, R. Datta, and U. Ramamurty: Acta Mater., 2010, vol. 58, pp. 6799–6809.CrossRef I. Sen, K. Gopinath, R. Datta, and U. Ramamurty: Acta Mater., 2010, vol. 58, pp. 6799–6809.CrossRef
54.
Zurück zum Zitat Hertzberg RW (1996) Deformation and Fracture Mechanics of Engineering Materials, 4th edn., vol. 89. Wiley, Hoboken Hertzberg RW (1996) Deformation and Fracture Mechanics of Engineering Materials, 4th edn., vol. 89. Wiley, Hoboken
55.
Zurück zum Zitat H. Knobbe, P. Starke, S. Hereñú, H. Christ, and D. Eifler: Int. J. Fatigue, 2015, vol. 80, pp. 81–89.CrossRef H. Knobbe, P. Starke, S. Hereñú, H. Christ, and D. Eifler: Int. J. Fatigue, 2015, vol. 80, pp. 81–89.CrossRef
56.
Zurück zum Zitat V.A. Coleman and C. Jagadish: Zinc Oxide Bulk, Thin Film, and Nanostructures. Elsevier, New York, 2006, pp. 1–20.CrossRef V.A. Coleman and C. Jagadish: Zinc Oxide Bulk, Thin Film, and Nanostructures. Elsevier, New York, 2006, pp. 1–20.CrossRef
57.
Zurück zum Zitat H.-K. Yoon and Y.-S. Yu: Int. Symp. Electron. Mater., 2005, pp. 169–173. H.-K. Yoon and Y.-S. Yu: Int. Symp. Electron. Mater., 2005, pp. 169–173.
58.
Zurück zum Zitat R. Fragoudakis, S. Karditsas, G. Savaidis, and N. Michailidis: Procedia Eng., 2014, vol. 74, pp. 309–312.CrossRef R. Fragoudakis, S. Karditsas, G. Savaidis, and N. Michailidis: Procedia Eng., 2014, vol. 74, pp. 309–312.CrossRef
Metadaten
Titel
Effect of Saline Atmosphere on the Mechanical Properties of Commercial Steel Wire
verfasst von
Lakhindra Marandi
Indrani Sen
Publikationsdatum
26.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4956-x

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

Topical Collection: Carl Koch Symposium: Mechanical Behavior of Nanomaterials

Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.