Skip to main content
Erschienen in: Strength of Materials 3/2019

13.08.2019

Effect of Shock and Vibration Preloading on the Deformation and Fracture Behavior of 17G1S-U Steel

verfasst von: P. O. Marushchak, M. G. Chausov, A. P. Pylypenko, A. P. Sorochak

Erschienen in: Strength of Materials | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The procedure of evaluating the crack resistance of 17G1S-U sheet steel after shock and vibration loading was advanced and experimentally tested using the method of complete deformation diagrams. The technical potential was employed to provide the growth of a mixed mode (I+III) macrocrack on the specimens with an identical central circular opening, which guaranteed the self-similar macrocrack propagation. The complete deformation diagrams displayed initial almost straight descending portion. In real constructions of gas mains, rather long macrocracks can arise after this fracture mode. The advanced procedure permits of reliable assessment of energy variations spent for a (I+III) mode crack propagation under any complex combined loading. The straight descending branch slope of the deformation diagram is established to be used for evaluating crack resistance variations of pipe steel subject to thermomechanical loading. Shock and vibration loading of a high frequency (1–2 kHz) is shown to essentially influence the crack resistance of pipe steel and plastic strain in the vicinity of a stress raiser. The impact of a power pulse on the material is dependent on its prestrain level through static tension and damage of its initial structure correspondingly. The controlling factor influencing the change in mechanical properties is the intensity of the power pulse. Basic fracture mechanisms of steel were established on the basis of examination of specimen fractures with scanning electron microscopy. The shock and vibration loading is evidently accompanied by energy contribution not only to the existing damages of the material but also to the initiating ones, which causes the localization of deformation and growth of pores in their vicinity. Since the energy accumulation can contribute to the modification of the material in the vicinity of those damages, the shape and sizes of ductile tear dimples are the informative parameters for evaluating the strength and plasticity of examined steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. F. Pichugin (Ed.), P. O. Marushchak, S. V. Panin, et al., Large-Scale Strain and Fracture Levels for Heat-Resistant Steels [in Russian], TPU, Tomsk (2013). V. F. Pichugin (Ed.), P. O. Marushchak, S. V. Panin, et al., Large-Scale Strain and Fracture Levels for Heat-Resistant Steels [in Russian], TPU, Tomsk (2013).
2.
Zurück zum Zitat S. V. Panin, P. O. Maruschak, I. V. Vlasov, et al., “Impact toughness of 12Cr1MoV steel. Part 2 – Influence of high intensity ion beam irradiation on energy and deformation parameters and mechanisms of fracture,” Theor. Appl. Fract. Mech., 83, 82–92 (2016).CrossRef S. V. Panin, P. O. Maruschak, I. V. Vlasov, et al., “Impact toughness of 12Cr1MoV steel. Part 2 – Influence of high intensity ion beam irradiation on energy and deformation parameters and mechanisms of fracture,” Theor. Appl. Fract. Mech., 83, 82–92 (2016).CrossRef
3.
Zurück zum Zitat M. G. Chausov, P. O. Marushchak, A. P. Pylypenko, and V. V. Berezin, Deformation and Fracture Behavior of Plastic Materials under Shock and Vibration Loading [in Ukrainian], Terno-graf, Ternopil (2018). M. G. Chausov, P. O. Marushchak, A. P. Pylypenko, and V. V. Berezin, Deformation and Fracture Behavior of Plastic Materials under Shock and Vibration Loading [in Ukrainian], Terno-graf, Ternopil (2018).
4.
Zurück zum Zitat M. G. Chausov, A. P. Pylypenko, and P. O. Marushchak, Procedure of Improving the Plastic Properties of Sheet Two-Phase High-Strength Titanium Alloys by Shock and Vibration Loading: Scientific-Methodical Recommendations for Plants of Ukraine as Regards Designing of Agricultural Equipment Manufacture [in Ukrainian], FOP V. A. Palyanytsya, Ternopil (2017). M. G. Chausov, A. P. Pylypenko, and P. O. Marushchak, Procedure of Improving the Plastic Properties of Sheet Two-Phase High-Strength Titanium Alloys by Shock and Vibration Loading: Scientific-Methodical Recommendations for Plants of Ukraine as Regards Designing of Agricultural Equipment Manufacture [in Ukrainian], FOP V. A. Palyanytsya, Ternopil (2017).
5.
Zurück zum Zitat N. G. Chausov and A. P. Pilipenko, “Influence of dynamic overloading on fracture kinetics of metals at the final stages of deformation,” Mechanika, 48, 13–18 (2004). N. G. Chausov and A. P. Pilipenko, “Influence of dynamic overloading on fracture kinetics of metals at the final stages of deformation,” Mechanika, 48, 13–18 (2004).
6.
Zurück zum Zitat M. G. Chausov, V. B. Berezin, A. P. Pylypenko, and V. B. Hutsaylyuk, “Strain field evolution on the surface of aluminum sheet alloys exposed to specific impact with oscillation loading,” J. Strain Anal. Eng., 50, No. 1, 61–72 (2015).CrossRef M. G. Chausov, V. B. Berezin, A. P. Pylypenko, and V. B. Hutsaylyuk, “Strain field evolution on the surface of aluminum sheet alloys exposed to specific impact with oscillation loading,” J. Strain Anal. Eng., 50, No. 1, 61–72 (2015).CrossRef
7.
Zurück zum Zitat M. Chausov, V. Hutsaylyuk, L. Sniezek, et al., “Strain field evolution on the surface of stainless sheet steel 12Cr17 exposed to a specific impact with oscillation loading,” in: Proc. of the 11th Int. Conf. on Intelligent Technologies in Logistics and Mechatronics Systems (ITELMS’2016, April 28–29, 2016, Panevéþys, Lithuania), Medimond, Bologna, Italy (2016), pp. 47–52. M. Chausov, V. Hutsaylyuk, L. Sniezek, et al., “Strain field evolution on the surface of stainless sheet steel 12Cr17 exposed to a specific impact with oscillation loading,” in: Proc. of the 11th Int. Conf. on Intelligent Technologies in Logistics and Mechatronics Systems (ITELMS’2016, April 28–29, 2016, Panevéþys, Lithuania), Medimond, Bologna, Italy (2016), pp. 47–52.
8.
Zurück zum Zitat M. G. Chausov, O. E. Zasymchuk, and K. M. Volyans’ka, “Studies on the display process of yield plateaus under pulse load adjustment of aluminum alloys,” Visn. NTUU “KPI”, Ser. Mashynobuduvannya, No. 63, 244–248 (2011). M. G. Chausov, O. E. Zasymchuk, and K. M. Volyans’ka, “Studies on the display process of yield plateaus under pulse load adjustment of aluminum alloys,” Visn. NTUU “KPI”, Ser. Mashynobuduvannya, No. 63, 244–248 (2011).
9.
Zurück zum Zitat M. G. Chausov, A. P. Pylypenko, V. B. Berezin, et al., “Influence of impact-oscillatory loading upon the mechanical properties of the VT-22 titanium alloy sheet,” J. Mater. Eng. Perfom., 25, No. 8, 3482–3492 (2016).CrossRef M. G. Chausov, A. P. Pylypenko, V. B. Berezin, et al., “Influence of impact-oscillatory loading upon the mechanical properties of the VT-22 titanium alloy sheet,” J. Mater. Eng. Perfom., 25, No. 8, 3482–3492 (2016).CrossRef
10.
Zurück zum Zitat S. V. Panin, P. O. Maruschak, I. V. Vlasov, and O. Prentkovskis, “Effect of stress concentrator shape on impact fracture mechanisms of 17Mn1Si steel,” Procedia Engineer., 165, 1925–1930 (2016).CrossRef S. V. Panin, P. O. Maruschak, I. V. Vlasov, and O. Prentkovskis, “Effect of stress concentrator shape on impact fracture mechanisms of 17Mn1Si steel,” Procedia Engineer., 165, 1925–1930 (2016).CrossRef
11.
Zurück zum Zitat P. O. Maruschak, S. V. Panin, M. G. Chausov, et al., “Effect of long-term operation on steels of main gas pipeline. Reduction of static fracture toughness,” J. Nat. Gas Sci. Eng., 38, 182–186 (2017).CrossRef P. O. Maruschak, S. V. Panin, M. G. Chausov, et al., “Effect of long-term operation on steels of main gas pipeline. Reduction of static fracture toughness,” J. Nat. Gas Sci. Eng., 38, 182–186 (2017).CrossRef
12.
Zurück zum Zitat V. Hutsaylyuk, M. Chausov, V. Berezin, et al., “Influence of dissipative structures formed by impulse loads on the processes of deformation and fracture,” Key Eng. Mater., 577–578, 273–276 (2014). V. Hutsaylyuk, M. Chausov, V. Berezin, et al., “Influence of dissipative structures formed by impulse loads on the processes of deformation and fracture,” Key Eng. Mater., 577–578, 273–276 (2014).
13.
Zurück zum Zitat M. Chausov, P. Maruschak, A. Pylypenko, and L. Markashova, “Enhancing plasticity of high-strength titanium alloys VT22 under impact-oscillatory loading,” Philos. Mag., 97, No. 6, 389–399 (2017).CrossRef M. Chausov, P. Maruschak, A. Pylypenko, and L. Markashova, “Enhancing plasticity of high-strength titanium alloys VT22 under impact-oscillatory loading,” Philos. Mag., 97, No. 6, 389–399 (2017).CrossRef
14.
Zurück zum Zitat A. A. Lebedev and N. G. Chausov, New Methods of Evaluating In-Service Degradation of Mechanical Properties of the Structure Metal [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2004). A. A. Lebedev and N. G. Chausov, New Methods of Evaluating In-Service Degradation of Mechanical Properties of the Structure Metal [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2004).
15.
Zurück zum Zitat N. G. Chausov, “Complete deformation diagram as the source of information on the kinetics of damage accumulation and crack resistance of materials,” Zavod. Lab. Diagnost. Mater., 70, No. 7, 42–49 (2004). N. G. Chausov, “Complete deformation diagram as the source of information on the kinetics of damage accumulation and crack resistance of materials,” Zavod. Lab. Diagnost. Mater., 70, No. 7, 42–49 (2004).
16.
Zurück zum Zitat M. G. Chausov, A. P. Pylypenko, P. O. Marushchak, and V. A. Dovganyuk, Method of Assessment of the Pulse Energy Input to the Plastic Material [in Ukrainian], Patent of Ukraine No. 113940, Valid since March 27, 2017, Bull. No. 6. M. G. Chausov, A. P. Pylypenko, P. O. Marushchak, and V. A. Dovganyuk, Method of Assessment of the Pulse Energy Input to the Plastic Material [in Ukrainian], Patent of Ukraine No. 113940, Valid since March 27, 2017, Bull. No. 6.
17.
Zurück zum Zitat M. A. Smirnov, I. Yu. Pyshmintsev, A. N. Maltseva, and O. V. Mushina, “Effect of ferrite-bainite structure on the properties of high-strength pipe steel,” Metallurgist, 56, Nos. 1–2, 43–51 (2012).CrossRef M. A. Smirnov, I. Yu. Pyshmintsev, A. N. Maltseva, and O. V. Mushina, “Effect of ferrite-bainite structure on the properties of high-strength pipe steel,” Metallurgist, 56, Nos. 1–2, 43–51 (2012).CrossRef
18.
Zurück zum Zitat V. M. Farber, I. Yu. Pyshmintsev, A. B. Arabei, et al., “Contributions of structural factors to the strength of K65 steels,” Steel Transl., 42, No. 9, 687–690 (2012).CrossRef V. M. Farber, I. Yu. Pyshmintsev, A. B. Arabei, et al., “Contributions of structural factors to the strength of K65 steels,” Steel Transl., 42, No. 9, 687–690 (2012).CrossRef
19.
Zurück zum Zitat I. N. Veselov, I. Yu. Pyshmintsev, K. A. Laev, and S. Yu. Zhukova, “Structure and mechanical properties of low-carbon steel for oil and gas pipelines,” Steel Transl., 41, No. 2, 165–170 (2011).CrossRef I. N. Veselov, I. Yu. Pyshmintsev, K. A. Laev, and S. Yu. Zhukova, “Structure and mechanical properties of low-carbon steel for oil and gas pipelines,” Steel Transl., 41, No. 2, 165–170 (2011).CrossRef
20.
Zurück zum Zitat P. O. Marushchak, R. T. Bishchak, and I. M. Danylyuk, Crack Resistance of Materials and Structures: Long-Term Operated Gas Mains [in Ukrainian], Zazaprint, Ternopil (2016). P. O. Marushchak, R. T. Bishchak, and I. M. Danylyuk, Crack Resistance of Materials and Structures: Long-Term Operated Gas Mains [in Ukrainian], Zazaprint, Ternopil (2016).
21.
Zurück zum Zitat S. V. Panin, D. D. Moiseenko, P. V. Maksimov, et al., “Influence of energy dissipation at the interphase boundaries on impact fracture behaviour of a plain carbon steel,” Theor. Appl. Fract. Mech., 97, 478–499 (2018).CrossRef S. V. Panin, D. D. Moiseenko, P. V. Maksimov, et al., “Influence of energy dissipation at the interphase boundaries on impact fracture behaviour of a plain carbon steel,” Theor. Appl. Fract. Mech., 97, 478–499 (2018).CrossRef
22.
Zurück zum Zitat I. Sevostianov and M. Kachanov, “Is the concept of “average shape” for a mixture of inclusions of diverse shapes legitimate?” Int. J. Solids Struct., 49, 3242–3254 (2012).CrossRef I. Sevostianov and M. Kachanov, “Is the concept of “average shape” for a mixture of inclusions of diverse shapes legitimate?” Int. J. Solids Struct., 49, 3242–3254 (2012).CrossRef
23.
Zurück zum Zitat I. Sevostianov and M. Kachanov, “Normal and tangential compliances of interface of rough surfaces with contacts of elliptic shape,” Int. J. Solids Struct., 45, 2723–2732 (2008).CrossRef I. Sevostianov and M. Kachanov, “Normal and tangential compliances of interface of rough surfaces with contacts of elliptic shape,” Int. J. Solids Struct., 45, 2723–2732 (2008).CrossRef
24.
Zurück zum Zitat Y. Sun, X. Li, X. Yu, et al., “Fracture morphologies of advanced high strength steel during deformation,” Acta Metall. Sin. (Engl. Lett.), 27, No. 1, 101–106 (2014).CrossRef Y. Sun, X. Li, X. Yu, et al., “Fracture morphologies of advanced high strength steel during deformation,” Acta Metall. Sin. (Engl. Lett.), 27, No. 1, 101–106 (2014).CrossRef
25.
Zurück zum Zitat S. Osovski, D. Rittel, J. A. Rodriguez-Martinez, and R. Zaera, “Dynamic tensile necking: Influence of specimen geometry and boundary conditions,” Mech. Mater., 62, 1–13 (2013).CrossRef S. Osovski, D. Rittel, J. A. Rodriguez-Martinez, and R. Zaera, “Dynamic tensile necking: Influence of specimen geometry and boundary conditions,” Mech. Mater., 62, 1–13 (2013).CrossRef
26.
Zurück zum Zitat A. Dorogoy, D. Rittel, and A. Godinger, “A shear-tension specimen for large strain testing,” Exp. Mech., 56, No. 3, 437–449 (2015).CrossRef A. Dorogoy, D. Rittel, and A. Godinger, “A shear-tension specimen for large strain testing,” Exp. Mech., 56, No. 3, 437–449 (2015).CrossRef
27.
Zurück zum Zitat M. Chausov, A. Pylypenko, V. Berezin, et al., “Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems,” Transport, 33, No. 1, 231–241 (2018).CrossRef M. Chausov, A. Pylypenko, V. Berezin, et al., “Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems,” Transport, 33, No. 1, 231–241 (2018).CrossRef
Metadaten
Titel
Effect of Shock and Vibration Preloading on the Deformation and Fracture Behavior of 17G1S-U Steel
verfasst von
P. O. Marushchak
M. G. Chausov
A. P. Pylypenko
A. P. Sorochak
Publikationsdatum
13.08.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00088-3

Weitere Artikel der Ausgabe 3/2019

Strength of Materials 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.