Skip to main content
Erschienen in: Journal of Materials Science 22/2016

29.07.2016 | Original Paper

Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns

Erschienen in: Journal of Materials Science | Ausgabe 22/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 or 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. Denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harris PJ (2001) Carbon nanotubes and related structures. Cambridge University, Cambridge Harris PJ (2001) Carbon nanotubes and related structures. Cambridge University, Cambridge
2.
Zurück zum Zitat Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64CrossRef Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64CrossRef
3.
Zurück zum Zitat Cha SI et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef Cha SI et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef
4.
Zurück zum Zitat Chae HG, Minus ML, Kumar S (2006) Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer 47(10):3494–3504CrossRef Chae HG, Minus ML, Kumar S (2006) Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer 47(10):3494–3504CrossRef
5.
Zurück zum Zitat Meng J et al (2013) Forming crystalline polymer-nano interphase structures for high-modulus and high-tensile/strength composite fibers. Macromol Mater Eng 299(2):144–153CrossRef Meng J et al (2013) Forming crystalline polymer-nano interphase structures for high-modulus and high-tensile/strength composite fibers. Macromol Mater Eng 299(2):144–153CrossRef
6.
Zurück zum Zitat Minus ML, Chae HG, Kumar S (2009) Interfacial crystallization in gel-spun poly (vinyl alcohol)/single-wall carbon nanotube composite fibers. Macromol Chem Phys 210(21):1799–1808CrossRef Minus ML, Chae HG, Kumar S (2009) Interfacial crystallization in gel-spun poly (vinyl alcohol)/single-wall carbon nanotube composite fibers. Macromol Chem Phys 210(21):1799–1808CrossRef
7.
Zurück zum Zitat Wang Z, Ciselli P, Peijs T (2007) The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes. Nanotechnology 18(45):455709CrossRef Wang Z, Ciselli P, Peijs T (2007) The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly (vinyl alcohol) tapes. Nanotechnology 18(45):455709CrossRef
8.
Zurück zum Zitat Young K et al (2010) Strong dependence of mechanical properties on fiber diameter for polymer–nanotube composite fibers: differentiating defect from orientation effects. ACS Nano 4(11):6989–6997CrossRef Young K et al (2010) Strong dependence of mechanical properties on fiber diameter for polymer–nanotube composite fibers: differentiating defect from orientation effects. ACS Nano 4(11):6989–6997CrossRef
9.
Zurück zum Zitat Kumar S et al (2002) Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24):9039–9043CrossRef Kumar S et al (2002) Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24):9039–9043CrossRef
10.
Zurück zum Zitat Gao J et al (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127(11):3847–3854CrossRef Gao J et al (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127(11):3847–3854CrossRef
11.
Zurück zum Zitat Ruan S, Gao P, Yu T (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47(5):1604–1611CrossRef Ruan S, Gao P, Yu T (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47(5):1604–1611CrossRef
12.
Zurück zum Zitat Hiremath N, Mays J, Bhat G (2016) Recent developments in carbon fibers and carbon nanotube-based fibers-a review. Polym Rev, p 00–00 (just-accepted) Hiremath N, Mays J, Bhat G (2016) Recent developments in carbon fibers and carbon nanotube-based fibers-a review. Polym Rev, p 00–00 (just-accepted)
13.
Zurück zum Zitat Scott CD et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72(5):573–580CrossRef Scott CD et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72(5):573–580CrossRef
14.
Zurück zum Zitat Laplaze D et al (1998) Carbon nanotubes: the solar approach. Carbon 36(5):685–688CrossRef Laplaze D et al (1998) Carbon nanotubes: the solar approach. Carbon 36(5):685–688CrossRef
15.
Zurück zum Zitat Li Y-L, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278CrossRef Li Y-L, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278CrossRef
16.
Zurück zum Zitat Zhang X et al (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18(12):1505CrossRef Zhang X et al (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18(12):1505CrossRef
17.
Zurück zum Zitat Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49(12):3755–3761CrossRef Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49(12):3755–3761CrossRef
18.
Zurück zum Zitat Sears K et al (2010) Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon 48(15):4450–4456CrossRef Sears K et al (2010) Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon 48(15):4450–4456CrossRef
19.
Zurück zum Zitat Miao M (2012) Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon 50(13):4973–4983CrossRef Miao M (2012) Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon 50(13):4973–4983CrossRef
20.
Zurück zum Zitat Li S et al (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72(12):1402–1407CrossRef Li S et al (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72(12):1402–1407CrossRef
21.
Zurück zum Zitat Liu K et al (2009) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4):045708CrossRef Liu K et al (2009) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4):045708CrossRef
22.
Zurück zum Zitat Dalton AB et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef Dalton AB et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef
23.
Zurück zum Zitat Jung Y, Kim T, Park CR (2015) Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon 88:60–69CrossRef Jung Y, Kim T, Park CR (2015) Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon 88:60–69CrossRef
24.
Zurück zum Zitat Miller SG et al (2014) Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation. ACS Appl Mater Interfaces 6(9):6120–6126CrossRef Miller SG et al (2014) Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation. ACS Appl Mater Interfaces 6(9):6120–6126CrossRef
25.
Zurück zum Zitat Banhart F, Li J, Terrones M (2005) Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1(10):953–956CrossRef Banhart F, Li J, Terrones M (2005) Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1(10):953–956CrossRef
26.
Zurück zum Zitat Koziol K et al (2007) High-performance carbon nanotube fiber. Science 318(5858):1892–1895CrossRef Koziol K et al (2007) High-performance carbon nanotube fiber. Science 318(5858):1892–1895CrossRef
27.
Zurück zum Zitat Tran C-D et al (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11):2662–2670CrossRef Tran C-D et al (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47(11):2662–2670CrossRef
28.
Zurück zum Zitat Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361CrossRef Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361CrossRef
29.
Zurück zum Zitat Ye Y et al (2013) Enhancing interfacial adhesion and functionality of carbon nanotube fibers with depolymerized chitosan. J Mater Chem C 1(10):2009–2013CrossRef Ye Y et al (2013) Enhancing interfacial adhesion and functionality of carbon nanotube fibers with depolymerized chitosan. J Mater Chem C 1(10):2009–2013CrossRef
30.
Zurück zum Zitat Zhao J et al (2010) Double-peak mechanical properties of carbon-nanotube fibers. Small 6(22):2612–2617CrossRef Zhao J et al (2010) Double-peak mechanical properties of carbon-nanotube fibers. Small 6(22):2612–2617CrossRef
31.
Zurück zum Zitat Evora M et al (2010) Functionalization of carbon nanofibers through electron beam irradiation. Carbon 48(7):2037–2046CrossRef Evora M et al (2010) Functionalization of carbon nanofibers through electron beam irradiation. Carbon 48(7):2037–2046CrossRef
32.
Zurück zum Zitat Zou H et al (2002) Electron beam-induced structure transformation of single-walled carbon nanotubes. Carbon 40(12):2282–2284CrossRef Zou H et al (2002) Electron beam-induced structure transformation of single-walled carbon nanotubes. Carbon 40(12):2282–2284CrossRef
33.
Zurück zum Zitat Moura CS et al (2012) Agglomeration defects on irradiated carbon nanotubes. AIP Adv 2(1):012174CrossRef Moura CS et al (2012) Agglomeration defects on irradiated carbon nanotubes. AIP Adv 2(1):012174CrossRef
34.
Zurück zum Zitat Li X et al (2012) Carbonaceous debris that resided in graphene oxide/reduced graphene oxide profoundly affect their electrochemical behaviors. Electrochem Commun 23:94–97CrossRef Li X et al (2012) Carbonaceous debris that resided in graphene oxide/reduced graphene oxide profoundly affect their electrochemical behaviors. Electrochem Commun 23:94–97CrossRef
35.
Zurück zum Zitat Telling RH et al (2003) Wigner defects bridge the graphite gap. Nat Mater 2(5):333–337CrossRef Telling RH et al (2003) Wigner defects bridge the graphite gap. Nat Mater 2(5):333–337CrossRef
36.
Zurück zum Zitat Zhang X et al (2002) Oxidation and opening of well-aligned carbon nanotube tips. Mater Trans 43(7):1707–1710CrossRef Zhang X et al (2002) Oxidation and opening of well-aligned carbon nanotube tips. Mater Trans 43(7):1707–1710CrossRef
37.
Zurück zum Zitat Filleter T, Espinosa H (2013) Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56:1–11CrossRef Filleter T, Espinosa H (2013) Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56:1–11CrossRef
38.
Zurück zum Zitat Dresselhaus M et al (1932) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc Lond A Math Phys Eng Sci 2010(368):5355–5377 Dresselhaus M et al (1932) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc Lond A Math Phys Eng Sci 2010(368):5355–5377
39.
Zurück zum Zitat Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57CrossRef
40.
Zurück zum Zitat Fonseca AF et al (2010) Load transfer between cross-linked walls of a carbon nanotube. Phys Rev B 81(4):045429CrossRef Fonseca AF et al (2010) Load transfer between cross-linked walls of a carbon nanotube. Phys Rev B 81(4):045429CrossRef
41.
Zurück zum Zitat Xu Z et al (2010) Effect of γ-ray radiation on the polyacrylonitrile based carbon fibers. Radiat Phys Chem 79(8):839–843CrossRef Xu Z et al (2010) Effect of γ-ray radiation on the polyacrylonitrile based carbon fibers. Radiat Phys Chem 79(8):839–843CrossRef
42.
Zurück zum Zitat Cançado LG et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196CrossRef Cançado LG et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196CrossRef
43.
Zurück zum Zitat Malard L et al (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87CrossRef Malard L et al (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87CrossRef
Metadaten
Titel
Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns
Publikationsdatum
29.07.2016
Erschienen in
Journal of Materials Science / Ausgabe 22/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0249-1

Weitere Artikel der Ausgabe 22/2016

Journal of Materials Science 22/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.