Skip to main content
Erschienen in: Acta Mechanica 10/2020

04.07.2020 | Original Paper

Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes

verfasst von: Vijay Choyal, S. I. Kundalwal

Erschienen in: Acta Mechanica | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transversely isotropic response of pristine as well as defective boron nitride nanotubes (BNNTs) containing Stone–Wales (SW) defects was comprehensively studied via molecular dynamic simulations with a three-body Tersoff force field. The elastic properties and the failure behavior of BNNTs were studied under the transversely isotropic loading conditions, namely uniaxial tension, twisting moment, in-plane shear and in-plane biaxial tension. The effect of chirality, diameter and SW defect density was taken into consideration. The failure mechanism of BNNTs under each loading condition was explained in detail. Our study reveals that the elastic moduli of zigzag BNNTs are higher than for armchair tubes and decrease as the diameter of the tube increases. The effect of SW defects is found to be higher on the elastic properties of smaller diameter BNNTs than for larger diameter tubes, regardless of chirality. The higher defect density reduces the axial Young’s modulus, shear, plane strain bulk and in-plane shear moduli by 11%, 18%, 9% and 7%, respectively. The SW defects affect the (1) longitudinal shear moduli of BNNTs more profoundly irrespective of chirality and (2) the mechanical behavior of zigzag BNNTs stronger compared to armchair ones. It is also found that the mechanical properties of BNNTs are functions of chirality and diameter, especially for small diameter tubes.
Literatur
1.
Zurück zum Zitat Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49, 5081–5084 (1994) Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49, 5081–5084 (1994)
2.
Zurück zum Zitat Chen, Y., Zou, J., Campbell, S.J., Caer, G.Le: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004) Chen, Y., Zou, J., Campbell, S.J., Caer, G.Le: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004)
3.
Zurück zum Zitat Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994) Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994)
4.
Zurück zum Zitat Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019) Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)
5.
Zurück zum Zitat Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007) Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)
6.
Zurück zum Zitat Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low Dimens. Syst. Nanostruct. 44, 1846–1852 (2012) Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low Dimens. Syst. Nanostruct. 44, 1846–1852 (2012)
7.
Zurück zum Zitat Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer (Guildf) 70, 149–160 (2015) Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer (Guildf) 70, 149–160 (2015)
8.
Zurück zum Zitat Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012) Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012)
9.
Zurück zum Zitat Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., Colliex, C.: Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006) Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., Colliex, C.: Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006)
10.
Zurück zum Zitat Dumitrica, T., Yakobson, B.I.: Rate theory of yield in boron nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–5 (2005) Dumitrica, T., Yakobson, B.I.: Rate theory of yield in boron nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–5 (2005)
11.
Zurück zum Zitat Schmidt, T.M., Baierle, R.J., Piquini, P., Fazzio, A.: Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 1–4 (2003) Schmidt, T.M., Baierle, R.J., Piquini, P., Fazzio, A.: Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 1–4 (2003)
12.
Zurück zum Zitat Song, J., Jiang, H., Wu, J., Huang, Y., Hwang, K.C.: Stone–Wales transformation in boron nitride nanotubes. Scr. Mater. 57, 571–574 (2007) Song, J., Jiang, H., Wu, J., Huang, Y., Hwang, K.C.: Stone–Wales transformation in boron nitride nanotubes. Scr. Mater. 57, 571–574 (2007)
13.
Zurück zum Zitat Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013) Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013)
14.
Zurück zum Zitat Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014) Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014)
15.
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017) Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017)
16.
Zurück zum Zitat Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)MATH Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)MATH
17.
Zurück zum Zitat Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018) Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018)
18.
Zurück zum Zitat Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018) Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018)
20.
Zurück zum Zitat Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1, 2952–2969 (2013) Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1, 2952–2969 (2013)
21.
Zurück zum Zitat Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Defects-enhanced dissociation of \(\text{ H}_{2}\) on boron nitride nanotubes. J. Chem. Phys. 124, 0–5 (2006) Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Defects-enhanced dissociation of \(\text{ H}_{2}\) on boron nitride nanotubes. J. Chem. Phys. 124, 0–5 (2006)
22.
Zurück zum Zitat Li, Y., Zhou, Z., Golberg, D., Bando, Y., Rague, P.Von: Stone–Wales defects in single-walled boron nitride nanotubes : formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008) Li, Y., Zhou, Z., Golberg, D., Bando, Y., Rague, P.Von: Stone–Wales defects in single-walled boron nitride nanotubes : formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008)
23.
Zurück zum Zitat Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1327–1331 (2011) Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1327–1331 (2011)
24.
Zurück zum Zitat Griebel, M., Hamaekers, J., Heber, F.: A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009) Griebel, M., Hamaekers, J., Heber, F.: A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009)
25.
Zurück zum Zitat Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A., Zare-Shahabadi, A.: Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 48, 53–60 (2013) Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A., Zare-Shahabadi, A.: Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 48, 53–60 (2013)
26.
Zurück zum Zitat Sarma, J.V.N., Group, M., Chowdhury, R., Jayaganthan, R., Scarpa, F.: Atomistic studies on tensile mechanics of BN nanotubes in the presence of defects. Int J Nanosci 13, 1–9 (2014) Sarma, J.V.N., Group, M., Chowdhury, R., Jayaganthan, R., Scarpa, F.: Atomistic studies on tensile mechanics of BN nanotubes in the presence of defects. Int J Nanosci 13, 1–9 (2014)
27.
Zurück zum Zitat Anoop Krishnan, N.M., Ghosh, D.: Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J. Appl. Phys. 116, 044313 (2014) Anoop Krishnan, N.M., Ghosh, D.: Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J. Appl. Phys. 116, 044313 (2014)
28.
Zurück zum Zitat Roohi, H., Jahantab, M., Yakta, M.: Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct. Chem. 26, 11–22 (2015) Roohi, H., Jahantab, M., Yakta, M.: Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct. Chem. 26, 11–22 (2015)
29.
Zurück zum Zitat Zeighampour, H., Tadi Beni, Y.: Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation. Mol. Simul. 46, 1–10 (2019) Zeighampour, H., Tadi Beni, Y.: Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation. Mol. Simul. 46, 1–10 (2019)
30.
Zurück zum Zitat Aliofkhazraei, M., Ali, N., Milne, W.I., William, I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook. Mechanical and Chemical Properties, vol. 297. CRC Press, Boca Raton (2016) Aliofkhazraei, M., Ali, N., Milne, W.I., William, I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook. Mechanical and Chemical Properties, vol. 297. CRC Press, Boca Raton (2016)
31.
Zurück zum Zitat Azevedo, S., Rosas, A., MacHado, M., Kaschny, J.R., Chacham, H.: Effects of deformation on the electronic properties of B-C-N nanotubes. J. Solid State Chem. 197, 254–260 (2013) Azevedo, S., Rosas, A., MacHado, M., Kaschny, J.R., Chacham, H.: Effects of deformation on the electronic properties of B-C-N nanotubes. J. Solid State Chem. 197, 254–260 (2013)
32.
Zurück zum Zitat Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 64, 1–10 (2001) Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 64, 1–10 (2001)
33.
Zurück zum Zitat Bettinger, H.F., Dumitrică, T., Scuseria, G.E., Yakobson, B.I.: Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–4 (2002) Bettinger, H.F., Dumitrică, T., Scuseria, G.E., Yakobson, B.I.: Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–4 (2002)
34.
Zurück zum Zitat Song, J., Wu, J., Huang, Y., Hwang, K.C.: Continuum modeling of boron nitride nanotubes. Nanotechnology 19, 445705 (2008) Song, J., Wu, J., Huang, Y., Hwang, K.C.: Continuum modeling of boron nitride nanotubes. Nanotechnology 19, 445705 (2008)
35.
Zurück zum Zitat Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196–205 (2015) Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196–205 (2015)
36.
Zurück zum Zitat Li, C., Chou, T.-W.: Static and dynamic properties of single-walled boron nitride nanotubes. J. Nanosci. Nanotechnol. 6, 54–60 (2006) Li, C., Chou, T.-W.: Static and dynamic properties of single-walled boron nitride nanotubes. J. Nanosci. Nanotechnol. 6, 54–60 (2006)
37.
Zurück zum Zitat Santosh, M., Maiti, P., Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009) Santosh, M., Maiti, P., Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009)
38.
Zurück zum Zitat Choyal, V., Choyal, V.K., Kundalwal, S.I.: Transversely isotropic elastic properties of vacancy defected boron nitride nanotubes using molecular dynamics simulations. In: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, pp. 1–4 (2018) Choyal, V., Choyal, V.K., Kundalwal, S.I.: Transversely isotropic elastic properties of vacancy defected boron nitride nanotubes using molecular dynamics simulations. In: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, pp. 1–4 (2018)
39.
Zurück zum Zitat Li, L., Chen, Y., Stachurski, Z.H.: Progress in natural science: materials international boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. Mater. Int. 23, 170–173 (2013) Li, L., Chen, Y., Stachurski, Z.H.: Progress in natural science: materials international boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. Mater. Int. 23, 170–173 (2013)
40.
Zurück zum Zitat Trivedi, S., Sharma, S.C., Harsha, S.P.: Evaluations of young’ s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899–1905 (2014) Trivedi, S., Sharma, S.C., Harsha, S.P.: Evaluations of young’ s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899–1905 (2014)
41.
Zurück zum Zitat Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017) Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017)
42.
Zurück zum Zitat Zhang, J., Peng, X.: Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: a molecular dynamics study. Mater. Chem. Phys. 198, 250–257 (2017) Zhang, J., Peng, X.: Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: a molecular dynamics study. Mater. Chem. Phys. 198, 250–257 (2017)
43.
Zurück zum Zitat Cong, Z., Lee, S.: Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct. 194, 80–86 (2018) Cong, Z., Lee, S.: Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct. 194, 80–86 (2018)
44.
Zurück zum Zitat Plimpton, S.J.: Computational Limits of Classical Molecular Dynamics Simulations 1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab, pp. 1–8 (1995) Plimpton, S.J.: Computational Limits of Classical Molecular Dynamics Simulations 1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab, pp. 1–8 (1995)
45.
Zurück zum Zitat Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988) Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)
46.
Zurück zum Zitat Kinaci, A., Haskins, J.B., Sevik, C., ÇagIn, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–8 (2012) Kinaci, A., Haskins, J.B., Sevik, C., ÇagIn, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–8 (2012)
47.
Zurück zum Zitat Bian, L., Gao, M.: Nanomechanics model for properties of carbon nanotubes. Acta Mech. 229, 4521–4538 (2018)MathSciNet Bian, L., Gao, M.: Nanomechanics model for properties of carbon nanotubes. Acta Mech. 229, 4521–4538 (2018)MathSciNet
48.
Zurück zum Zitat Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004) Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004)
49.
Zurück zum Zitat Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH
50.
Zurück zum Zitat Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. Trans. ASME 81, 1–9 (2014) Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. Trans. ASME 81, 1–9 (2014)
51.
Zurück zum Zitat Moon, W.H., Hwang, H.J.: Theoretical study of defects of BN nanotubes: a molecular-mechanics study. Phys. E Low Dimens. Syst. Nanostruct. 28, 419–422 (2005) Moon, W.H., Hwang, H.J.: Theoretical study of defects of BN nanotubes: a molecular-mechanics study. Phys. E Low Dimens. Syst. Nanostruct. 28, 419–422 (2005)
52.
Zurück zum Zitat Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput. Mater. Sci. 49, 699–703 (2010) Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput. Mater. Sci. 49, 699–703 (2010)
53.
Zurück zum Zitat Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)MATH Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)MATH
54.
Zurück zum Zitat Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)MathSciNetMATH Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)MathSciNetMATH
55.
Zurück zum Zitat Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2017) Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2017)
56.
Zurück zum Zitat Wang, H., Ding, N., Zhao, X., Wu, C.L.: Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys. 51, 125303 (2018) Wang, H., Ding, N., Zhao, X., Wu, C.L.: Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys. 51, 125303 (2018)
57.
Zurück zum Zitat Nguyen, D.T.: The size effect in mechanics properties of boron nitride nanotube under tension. Vietnam J. Sci. Technol. 55, 475–483 (2017) Nguyen, D.T.: The size effect in mechanics properties of boron nitride nanotube under tension. Vietnam J. Sci. Technol. 55, 475–483 (2017)
Metadaten
Titel
Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes
verfasst von
Vijay Choyal
S. I. Kundalwal
Publikationsdatum
04.07.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 10/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02748-x

Weitere Artikel der Ausgabe 10/2020

Acta Mechanica 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.