Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2018

10.10.2017

Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses

verfasst von: M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, Hassan M. A. Hassan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The glasses defined by the formula 37.5Li2O–25V2O5–37.5P2O5 mol% containing different sulfur (0, 10, 50 and 100 mol%) content were studied before and after nanocrystallization. X-ray diffraction and transmission electron micrograph of the heat treated samples indicated nanocrystals embedded in the glass matrix. The average crystallite size was found between 18 and 37 nm. Sulfur (S) behaved as a reducing agent for redox reaction during preparation of glass and affected the conductivity, i.e., the V4+–V5+ or V3+–V4+ion pairs increased with increasing S content and led to increasing conductivity of glasses. After creation of the nanocrystalline phase, S-free glass–ceramic nanocomposite exhibited improvement in electrical conductivity around three orders of magnitude than initial glass. This great improvement of electrical conductivity is related to increase in a concentration of V4+–V5+or V3+–V4+ ion pairs and also, forming of defective and well-conducting regions along the crystallite/glass interfaces. The decrease in electrical conductivity in the 50S glass–ceramic nanocomposite, which possessed the highest crystallite size, could be related to the increase of grain boundaries scattering because of the increasing crystallite size. The conduction was attributed to non-adiabatic small polaron hopping and mostly determined by hopping carrier mobility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.M. El-Desoky, Small polaron transport in V2O5–NiO–TeO2 glasses. J. Mater. Sci. 14, 215–221 (2003) M.M. El-Desoky, Small polaron transport in V2O5–NiO–TeO2 glasses. J. Mater. Sci. 14, 215–221 (2003)
2.
Zurück zum Zitat M.S. Al-Assiri, M.M. El-Desoky, Grain-size effects on the structural, electrical properties and ferroelectric behaviour of barium titanate-based glass–ceramic nano-composite. J. Mater. Sci. 24, 784–792 (2013) M.S. Al-Assiri, M.M. El-Desoky, Grain-size effects on the structural, electrical properties and ferroelectric behaviour of barium titanate-based glass–ceramic nano-composite. J. Mater. Sci. 24, 784–792 (2013)
3.
Zurück zum Zitat N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968)CrossRef N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968)CrossRef
4.
Zurück zum Zitat I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)CrossRef
5.
Zurück zum Zitat J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski, Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses. J Power Sources 173, 743–747 (2007)CrossRef J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski, Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses. J Power Sources 173, 743–747 (2007)CrossRef
6.
Zurück zum Zitat H. Takahashi, T. Karasawa, T. Sakuma, J.E. Garbarczyk, Electrical conduction in the vitreous and crystallized Li2O–V2O5–P2O5 system. Solid State Ionics 181, 27–32 (2010)CrossRef H. Takahashi, T. Karasawa, T. Sakuma, J.E. Garbarczyk, Electrical conduction in the vitreous and crystallized Li2O–V2O5–P2O5 system. Solid State Ionics 181, 27–32 (2010)CrossRef
7.
Zurück zum Zitat P.P. Michalski, J.L. Nowinski, T.K. Pietrzak et al., Preparation and characterization of Li2O–FeO–V2O5–P2O5 glasses and related nanomaterials. Procedia Eng. 98, 78–85 (2014)CrossRef P.P. Michalski, J.L. Nowinski, T.K. Pietrzak et al., Preparation and characterization of Li2O–FeO–V2O5–P2O5 glasses and related nanomaterials. Procedia Eng. 98, 78–85 (2014)CrossRef
8.
Zurück zum Zitat J.E. Garbarczyk, T.K. Pietrzak, M. Wasiucionek et al., High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ionics 272, 53–59 (2015)CrossRef J.E. Garbarczyk, T.K. Pietrzak, M. Wasiucionek et al., High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ionics 272, 53–59 (2015)CrossRef
9.
Zurück zum Zitat T.K. Pietrzak, J.E. Garbarczyk, M. Wasiucionek, J.L. Nowiński, Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glasses. Phys Chem Glasses Eur J Glass Sci Technol B 57, 113–124 (2016)CrossRef T.K. Pietrzak, J.E. Garbarczyk, M. Wasiucionek, J.L. Nowiński, Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glasses. Phys Chem Glasses Eur J Glass Sci Technol B 57, 113–124 (2016)CrossRef
10.
Zurück zum Zitat M.S. Al-Assiri, M.M. El-Desoky, A. Alyamani et al., Spectroscopic study of nanocrystalline V2O5·nH2O films doped with Li ions. Opt Laser Technol 42, 994–1003 (2010)CrossRef M.S. Al-Assiri, M.M. El-Desoky, A. Alyamani et al., Spectroscopic study of nanocrystalline V2O5·nH2O films doped with Li ions. Opt Laser Technol 42, 994–1003 (2010)CrossRef
11.
Zurück zum Zitat A.A. Ahmed, T.M. El Shamy, N.A. Sharaf, Absorption spectra of S2 molecules in alkali borate glasses. J. Non-Cryst. Solids 30, 225–228 (1978)CrossRef A.A. Ahmed, T.M. El Shamy, N.A. Sharaf, Absorption spectra of S2 molecules in alkali borate glasses. J. Non-Cryst. Solids 30, 225–228 (1978)CrossRef
12.
Zurück zum Zitat T. Chivers, The identities of the chromophores in coloured and colourless sulphur-doped borate glasses. J. Non-Cryst. Solids 41, 143–144 (1980)CrossRef T. Chivers, The identities of the chromophores in coloured and colourless sulphur-doped borate glasses. J. Non-Cryst. Solids 41, 143–144 (1980)CrossRef
13.
Zurück zum Zitat H. Lux, H. Anslinger, Über die blauen Lösungen des Schwefels. Chem Ber 94, 1161–1172 (1961)CrossRef H. Lux, H. Anslinger, Über die blauen Lösungen des Schwefels. Chem Ber 94, 1161–1172 (1961)CrossRef
14.
Zurück zum Zitat A.A. Ahmed, N.A. Sharaf, R.A. Condrate, Raman microprobe investigation of sulphur-doped alkali borate glasses. J. Non-Cryst. Solids 210, 59–69 (1997)CrossRef A.A. Ahmed, N.A. Sharaf, R.A. Condrate, Raman microprobe investigation of sulphur-doped alkali borate glasses. J. Non-Cryst. Solids 210, 59–69 (1997)CrossRef
15.
Zurück zum Zitat B.V. Chowdari, K.F. Mok, R. Gopalakrishnan, Spectroscopic and electrical studies of silver sulfophosphate glasses. J. Non-Cryst. Solids 160, 73–81 (1993)CrossRef B.V. Chowdari, K.F. Mok, R. Gopalakrishnan, Spectroscopic and electrical studies of silver sulfophosphate glasses. J. Non-Cryst. Solids 160, 73–81 (1993)CrossRef
16.
Zurück zum Zitat M.M. El-Desoky, A. Al-Hajry, M. Tokunaga et al., Effect of sulfur addition on the redox state of iron in iron phosphate glasses. Hyperfine Interact. 156/157, 547–553 (2004)CrossRef M.M. El-Desoky, A. Al-Hajry, M. Tokunaga et al., Effect of sulfur addition on the redox state of iron in iron phosphate glasses. Hyperfine Interact. 156/157, 547–553 (2004)CrossRef
17.
Zurück zum Zitat M.M. El-Desoky, F.A. Ibrahim, M.Y. Hassaan, Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses. Solid State Sci. 13, 1616–1622 (2011)CrossRef M.M. El-Desoky, F.A. Ibrahim, M.Y. Hassaan, Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses. Solid State Sci. 13, 1616–1622 (2011)CrossRef
18.
Zurück zum Zitat A. Aronne, V.N. Sigaev, B. Champagnon et al., The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy. J. Non-Cryst. Solids 351, 3610–3618 (2005)CrossRef A. Aronne, V.N. Sigaev, B. Champagnon et al., The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy. J. Non-Cryst. Solids 351, 3610–3618 (2005)CrossRef
19.
Zurück zum Zitat A.M. Al-Syadi, E.S. Yousef, M.M. El-Desoky, M.S. Al-Assiri, Impedance spectroscopy of V2O5–Bi2O3–BaTiO3 glass–ceramics. Solid State Sci. 26, 72–82 (2013)CrossRef A.M. Al-Syadi, E.S. Yousef, M.M. El-Desoky, M.S. Al-Assiri, Impedance spectroscopy of V2O5–Bi2O3–BaTiO3 glass–ceramics. Solid State Sci. 26, 72–82 (2013)CrossRef
20.
Zurück zum Zitat A.M. Al-Syadi, M.S. Al-Assiri, H.M. Hassan, M.M. El-Desoky, Grain size effects on the transport properties of Li3V2(PO4)3 glass–ceramic nanocomposites for lithium cathode batteries. J. Mater. Sci. 27, 4074–4083 (2016) A.M. Al-Syadi, M.S. Al-Assiri, H.M. Hassan, M.M. El-Desoky, Grain size effects on the transport properties of Li3V2(PO4)3 glass–ceramic nanocomposites for lithium cathode batteries. J. Mater. Sci. 27, 4074–4083 (2016)
21.
Zurück zum Zitat M.M. El-Desoky, A.M. Al-Syadi, M.S. Al-Assiri et al., Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. J. Solid State Electrochem. 20, 2663–2671 (2016)CrossRef M.M. El-Desoky, A.M. Al-Syadi, M.S. Al-Assiri et al., Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. J. Solid State Electrochem. 20, 2663–2671 (2016)CrossRef
22.
Zurück zum Zitat M. Rathore, A. Dalvi, Effect of conditional glass former variation on electrical transport in Li2O-P2O5 glassy and glass-ceramic ionic system. Solid State Ionics 263, 119–124 (2014)CrossRef M. Rathore, A. Dalvi, Effect of conditional glass former variation on electrical transport in Li2O-P2O5 glassy and glass-ceramic ionic system. Solid State Ionics 263, 119–124 (2014)CrossRef
23.
Zurück zum Zitat M. Tatsumisago, S. Hama, A. Hayashi et al., New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses. Solid State Ionics 154–155, 635–640 (2002)CrossRef M. Tatsumisago, S. Hama, A. Hayashi et al., New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses. Solid State Ionics 154–155, 635–640 (2002)CrossRef
24.
Zurück zum Zitat S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on as-sb-se glasses. J. Non Cryst. Solids 88, 11–34 (1986)CrossRef S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on as-sb-se glasses. J. Non Cryst. Solids 88, 11–34 (1986)CrossRef
25.
Zurück zum Zitat J. Sestak, Applicability of DTA to the study of crystallization kinetics of glasses. Phys. Chem. Glass. 15, 137–140 (1974) J. Sestak, Applicability of DTA to the study of crystallization kinetics of glasses. Phys. Chem. Glass. 15, 137–140 (1974)
26.
Zurück zum Zitat A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czech J. Phys. B 22, 1187–1193 (1972)CrossRef A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czech J. Phys. B 22, 1187–1193 (1972)CrossRef
27.
Zurück zum Zitat M. Abid, M. Et-labirou, M. Taibi, Structure and DC conductivity of lead sodium ultraphosphate glasses. Mater. Sci. Eng B 97, 20–24 (2003)CrossRef M. Abid, M. Et-labirou, M. Taibi, Structure and DC conductivity of lead sodium ultraphosphate glasses. Mater. Sci. Eng B 97, 20–24 (2003)CrossRef
28.
Zurück zum Zitat B.K. Money, K. Hariharan, Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J. Phys. 21, 115102 (2009) B.K. Money, K. Hariharan, Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J. Phys. 21, 115102 (2009)
29.
Zurück zum Zitat A. Hayashi, S. Hama, H. Morimoto et al., High lithium ion conductivity of glass–ceramics derived from mechanically milled glassy powders. Chem. Lett. 30, 872–873 (2001)CrossRef A. Hayashi, S. Hama, H. Morimoto et al., High lithium ion conductivity of glass–ceramics derived from mechanically milled glassy powders. Chem. Lett. 30, 872–873 (2001)CrossRef
30.
Zurück zum Zitat M.Y. Hassaan, M.M. El-Desoky, M.G. Moustafa et al., Role of sulfur as a reducing agent for the transition metals incorporated into lithium silicate glass. Croat. Chem. Acta 88, 505–510 (2015)CrossRef M.Y. Hassaan, M.M. El-Desoky, M.G. Moustafa et al., Role of sulfur as a reducing agent for the transition metals incorporated into lithium silicate glass. Croat. Chem. Acta 88, 505–510 (2015)CrossRef
31.
Zurück zum Zitat A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, Correlation between grain size and transport properties of lead titanate based-glass–ceramic nano-composites. J. Mater. Sci. 27, 8446–8454 (2016) A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, Correlation between grain size and transport properties of lead titanate based-glass–ceramic nano-composites. J. Mater. Sci. 27, 8446–8454 (2016)
32.
Zurück zum Zitat M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Optical properties of annealed ZnO thin films fabricated by pulsed laser deposition. Silicon 7, 393–400 (2015)CrossRef M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Optical properties of annealed ZnO thin films fabricated by pulsed laser deposition. Silicon 7, 393–400 (2015)CrossRef
33.
Zurück zum Zitat Y.G. Wang, S.P. Lau, H.W. Lee et al., Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94, 354–358 (2003)CrossRef Y.G. Wang, S.P. Lau, H.W. Lee et al., Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94, 354–358 (2003)CrossRef
34.
Zurück zum Zitat M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, Annealing effects on the structural and optical properties of growth ZnO thin films fabricated by pulsed laser deposition (PLD). J. Mater. Sci. 25, 5071–5077 (2014) M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, Annealing effects on the structural and optical properties of growth ZnO thin films fabricated by pulsed laser deposition (PLD). J. Mater. Sci. 25, 5071–5077 (2014)
35.
Zurück zum Zitat M.M. El-Desoky, M.M. Mostafa, M.S. Ayoub, M.A. Ahmed, Transport properties of Ba-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. 26, 6793–6800 (2015) M.M. El-Desoky, M.M. Mostafa, M.S. Ayoub, M.A. Ahmed, Transport properties of Ba-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. 26, 6793–6800 (2015)
36.
Zurück zum Zitat M.M. El-Desoky, S.M. Abo-Naf, Properties and structure of semiconducting sodium iron germanoborate glasses. J. Mater. Sci. 15, 425–433 (2004) M.M. El-Desoky, S.M. Abo-Naf, Properties and structure of semiconducting sodium iron germanoborate glasses. J. Mater. Sci. 15, 425–433 (2004)
37.
Zurück zum Zitat M.M. El-Desoky, A. Al-Shahrani, Iron doping of semiconducting bismuth alkali borate glasses. Physica B 383, 163–170 (2006)CrossRef M.M. El-Desoky, A. Al-Shahrani, Iron doping of semiconducting bismuth alkali borate glasses. Physica B 383, 163–170 (2006)CrossRef
38.
Zurück zum Zitat N.F. Mott, Conduction in non-crystalline materials. Philos Mag 19, 835–852 (1969)CrossRef N.F. Mott, Conduction in non-crystalline materials. Philos Mag 19, 835–852 (1969)CrossRef
39.
Zurück zum Zitat M.Y. Hassaan, M.M. El-Desoky, S.M. Salem, S.H. Salah, Mössbauer and electrical investigation of sulfur-doped sodium borate glasses containing iron. J Radioanal. Nucl. Chem. 249, 595–600 (2001)CrossRef M.Y. Hassaan, M.M. El-Desoky, S.M. Salem, S.H. Salah, Mössbauer and electrical investigation of sulfur-doped sodium borate glasses containing iron. J Radioanal. Nucl. Chem. 249, 595–600 (2001)CrossRef
40.
Zurück zum Zitat M. Kleitz, M.C. Steil, Microstructure blocking effects versus effective medium theories in YSZ. J. Eur. Ceram. Soc. 17, 819–829 (1997)CrossRef M. Kleitz, M.C. Steil, Microstructure blocking effects versus effective medium theories in YSZ. J. Eur. Ceram. Soc. 17, 819–829 (1997)CrossRef
41.
Zurück zum Zitat M.M. El-Desoky, Dielectric behaviour and AC conductivity of sodium borate glass containing CoO. J. Phys. Chem. Solids 59, 1659–1666 (1998)CrossRef M.M. El-Desoky, Dielectric behaviour and AC conductivity of sodium borate glass containing CoO. J. Phys. Chem. Solids 59, 1659–1666 (1998)CrossRef
42.
Zurück zum Zitat A. Al-Shahrani, M.M. El-Desoky, Electrical transport studies in alkali iron phosphate glasses. J. Mater. Sci. 17, 43–49 (2006) A. Al-Shahrani, M.M. El-Desoky, Electrical transport studies in alkali iron phosphate glasses. J. Mater. Sci. 17, 43–49 (2006)
43.
Zurück zum Zitat H. Wakabayashi, The relationship between kinetic and thermodynamic properties in mixed alkali glass. J. Non Cryst. Solids 203, 274–279 (1996)CrossRef H. Wakabayashi, The relationship between kinetic and thermodynamic properties in mixed alkali glass. J. Non Cryst. Solids 203, 274–279 (1996)CrossRef
44.
Zurück zum Zitat M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD). Superlattices Microstruct. 75, 127–135 (2014)CrossRef M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD). Superlattices Microstruct. 75, 127–135 (2014)CrossRef
45.
Zurück zum Zitat M.M. El-Desoky, Characterization and transport properties of V2O5–Fe2O3–TeO2 glasses. J. Non-Cryst. Solids 35, 3139–3146 (2005)CrossRef M.M. El-Desoky, Characterization and transport properties of V2O5–Fe2O3–TeO2 glasses. J. Non-Cryst. Solids 35, 3139–3146 (2005)CrossRef
46.
Zurück zum Zitat M. Sayer, A. Mansingh, Transport Properties of Semiconducting Phosphate Glasses. Phys. Rev. B 6, 4629–4643 (1972)CrossRef M. Sayer, A. Mansingh, Transport Properties of Semiconducting Phosphate Glasses. Phys. Rev. B 6, 4629–4643 (1972)CrossRef
47.
Zurück zum Zitat N.F. Mott, Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967)CrossRef N.F. Mott, Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967)CrossRef
48.
Zurück zum Zitat R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, Hopping conduction in bismuth modified zinc vanadate glasses: an applicability of Mott’s model. J. Appl. Phys. 112, 113716 (2012)CrossRef R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, Hopping conduction in bismuth modified zinc vanadate glasses: an applicability of Mott’s model. J. Appl. Phys. 112, 113716 (2012)CrossRef
49.
Zurück zum Zitat S. Dahiya, R. Punia, A. Singh, A.S. Maan, S. Murugavel, DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system. J. Am. Ceram. Soc. 98, 2776–2783 (2015)CrossRef S. Dahiya, R. Punia, A. Singh, A.S. Maan, S. Murugavel, DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system. J. Am. Ceram. Soc. 98, 2776–2783 (2015)CrossRef
50.
Zurück zum Zitat A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 14321 (2012)CrossRef A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 14321 (2012)CrossRef
51.
Zurück zum Zitat D. Emin, T. Holstein, Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann. Phys. 53, 439–520 (1969)CrossRef D. Emin, T. Holstein, Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann. Phys. 53, 439–520 (1969)CrossRef
52.
Zurück zum Zitat T. Holstein, Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8, 343–389 (1959)CrossRef T. Holstein, Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8, 343–389 (1959)CrossRef
53.
Zurück zum Zitat V.N. Bogomolov, E.K. Kudinev, Y.A. Firsov, Polaron nature of current carriers in rutile (TiO2). Sov. Phys. Solid State 9, 2502 (1968) V.N. Bogomolov, E.K. Kudinev, Y.A. Firsov, Polaron nature of current carriers in rutile (TiO2). Sov. Phys. Solid State 9, 2502 (1968)
54.
Zurück zum Zitat M.S. Al-Assiri, M.M. El-Desoky, Nanocrystallization as a method of improvement of electrical properties of Fe2O3–PbO2–TeO2 glasses. J. Mater. Sci. 25, 3703–3711 (2014) M.S. Al-Assiri, M.M. El-Desoky, Nanocrystallization as a method of improvement of electrical properties of Fe2O3–PbO2–TeO2 glasses. J. Mater. Sci. 25, 3703–3711 (2014)
55.
Zurück zum Zitat K. Sega, Y. Kuroda, H. Sakta, Dc conductivity of V2O5–MnO–TeO2 glasses. J. Mater. Sci. 33, 1303–1308 (1998)CrossRef K. Sega, Y. Kuroda, H. Sakta, Dc conductivity of V2O5–MnO–TeO2 glasses. J. Mater. Sci. 33, 1303–1308 (1998)CrossRef
Metadaten
Titel
Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses
verfasst von
M. M. El-Desoky
A. M. Al-Syadi
M. S. Al-Assiri
Hassan M. A. Hassan
Publikationsdatum
10.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7994-z

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science: Materials in Electronics 2/2018 Zur Ausgabe

Neuer Inhalt