Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2015

01.06.2015

Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3

verfasst von: M. Muneeswaran, Radhalayam Dhanalakshmi, N. V. Giridharan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tb substituted BiFeO3 [Bi1−xTbxFeO3 (x = 0.05, 0.10, 0.15)] have been synthesized by a low temperature assisted Co-precipitation method. Rietveld-refinement of the X-ray diffraction data reveals a transition from rhombohedral (R3c) to orthorhombic (Pnma) phase, i.e. polar to non-polar phase with Tb substitution. The crystallite sizes of Bi1−xTbxFeO3 (x = 0.05, 0.1 and 0.15) are found to be approximately 30, 21 and 15 nm calculated using Debye–Scherrer equation. From transmission electron microscopy analysis, the particle sizes are found to be between 35–40, 30–35, and 25–30 nm, respectively for Bi1−xTbxFeO3 (x = 0.05, 0.10 and 0.15) samples. UV–Vis diffuse reflectance spectra show a decrease of band gap with increase in Tb concentration. 4A1 and 7E Raman modes have been observed in the range 100–650 cm−1 and two phonon modes centred around 1150–1450 cm−1 have also been observed. The changes in Raman modes such as prominent frequency shift, line broadening and intensity reveals the existence of substitution induced structural changes as supported by the Rietveld refinement. Temperature dependent dielectric measurements on the samples show magnetoelectric coupling in terms of a dielectric anomaly near the Neel temperature (TN). An enhancement of magnetization with increasing Tb concentration in BFO has been observed from room temperature magnetization studies. The leakage current density is found to be reduced with the increase of Tb concentration. Further, P–E hysteresis loop studies show a decrease of remnant polarization (Pr) with the increase in Tb concentration predicting a transition from ferroelectric (polar) to paraelectric (non-polar) phase as inferred from X-ray diffraction analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef
2.
Zurück zum Zitat M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. 38, R123–R152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. 38, R123–R152 (2005)CrossRef
3.
Zurück zum Zitat Y. Benfang, L. Meiya, L. Jun, G. Dongyun, P. Ling, Z. Xingzhong, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008)CrossRef Y. Benfang, L. Meiya, L. Jun, G. Dongyun, P. Ling, Z. Xingzhong, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008)CrossRef
4.
Zurück zum Zitat S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)CrossRef S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)CrossRef
5.
Zurück zum Zitat S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRef S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRef
6.
Zurück zum Zitat M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8, 341–346 (2013)CrossRef M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8, 341–346 (2013)CrossRef
7.
Zurück zum Zitat P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J. Phys.: Condens. Matter 21, 012205 (2009) P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J. Phys.: Condens. Matter 21, 012205 (2009)
8.
Zurück zum Zitat S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R. Justin, Joseyphus, and S. Dhanuskodi, Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics. J. Alloys Compd. 493, 569–572 (2010)CrossRef S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R. Justin, Joseyphus, and S. Dhanuskodi, Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics. J. Alloys Compd. 493, 569–572 (2010)CrossRef
9.
Zurück zum Zitat S.K. Pradhan, B.K. Roul, D.R. Sahu, Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 152, 1176–1180 (2012)CrossRef S.K. Pradhan, B.K. Roul, D.R. Sahu, Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 152, 1176–1180 (2012)CrossRef
10.
Zurück zum Zitat P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)CrossRef P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)CrossRef
11.
Zurück zum Zitat S. Pattanayak, R.N.P. Choudhary, P.R. Das, Effect of Gd-substitution on phase transition and conduction mechanism of BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 2767–2771 (2013) S. Pattanayak, R.N.P. Choudhary, P.R. Das, Effect of Gd-substitution on phase transition and conduction mechanism of BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 2767–2771 (2013)
12.
Zurück zum Zitat Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.052−xDyxFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 323–327 (2011) Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.052−xDyxFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 323–327 (2011)
13.
Zurück zum Zitat Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K.J. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. Appl. Phys. 104, 116109 (2008)CrossRef Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K.J. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. Appl. Phys. 104, 116109 (2008)CrossRef
14.
Zurück zum Zitat M.S. Sverre, E.M. Ann, G. Tor, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)CrossRef M.S. Sverre, E.M. Ann, G. Tor, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)CrossRef
15.
Zurück zum Zitat M. Muneeswaran, N.V. Giridharan, Effect of Dy-substitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles. J. Appl. Phys. 115, 214109 (2014)CrossRef M. Muneeswaran, N.V. Giridharan, Effect of Dy-substitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles. J. Appl. Phys. 115, 214109 (2014)CrossRef
16.
Zurück zum Zitat Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Magnetic enhancement across a ferroelectric–paraelectric phase boundary in Bi1−xSmxFeO3. Phys. B 411, 106–109 (2013)CrossRef Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Magnetic enhancement across a ferroelectric–paraelectric phase boundary in Bi1−xSmxFeO3. Phys. B 411, 106–109 (2013)CrossRef
17.
Zurück zum Zitat V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, Structural and magnetic phase transitions in Bi1−xPrxFeO3 perovskites. J. Mater. Sci. 47, 1578–1581 (2012)CrossRef V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, Structural and magnetic phase transitions in Bi1−xPrxFeO3 perovskites. J. Mater. Sci. 47, 1578–1581 (2012)CrossRef
18.
Zurück zum Zitat Y. Wang, C.W. Nan, Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 103, 114104 (2008)CrossRef Y. Wang, C.W. Nan, Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 103, 114104 (2008)CrossRef
19.
Zurück zum Zitat Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)CrossRef Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)CrossRef
20.
Zurück zum Zitat S. Saxin, C.S. Knee, Crystal structure of Bi1−xTbxFeO3 from high-resolution neutron diffraction. J. Solid State Chem. 184, 1576–1579 (2011)CrossRef S. Saxin, C.S. Knee, Crystal structure of Bi1−xTbxFeO3 from high-resolution neutron diffraction. J. Solid State Chem. 184, 1576–1579 (2011)CrossRef
21.
Zurück zum Zitat J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structural evolution and magnetization enhancement of Bi1−xTbxFeO3. J. Phys. Chem. Solids 74, 849–853 (2013)CrossRef J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structural evolution and magnetization enhancement of Bi1−xTbxFeO3. J. Phys. Chem. Solids 74, 849–853 (2013)CrossRef
22.
Zurück zum Zitat G.S. Lotey, N.K. Verma, Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater. Lett. 111, 55–58 (2013)CrossRef G.S. Lotey, N.K. Verma, Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater. Lett. 111, 55–58 (2013)CrossRef
23.
Zurück zum Zitat M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A 114, 853–859 (2014)CrossRef M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A 114, 853–859 (2014)CrossRef
24.
Zurück zum Zitat S. Kumar, Structural, dielectric and magnetic characterization of large scale template synthesized Gd doped BiFeO3 nanowires. J. Mater. Sci.: Mater. Electron. 24, 2112–2115 (2013) S. Kumar, Structural, dielectric and magnetic characterization of large scale template synthesized Gd doped BiFeO3 nanowires. J. Mater. Sci.: Mater. Electron. 24, 2112–2115 (2013)
25.
Zurück zum Zitat K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)CrossRef K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)CrossRef
26.
Zurück zum Zitat I. Levin, S. Karimi, V. Provenzano, C.L. Dennis, H. Wu, T. Comyn, J. Stevenson, I.S. Ronald, M. Reaney, Reorientation of magnetic dipoles at the antiferroelectric–paraelectric phase transition of Bi1−xNdxFeO3 (0.15 ≤ x ≤ 0.25). Phys. Rev. B 81, 020103R (2010)CrossRef I. Levin, S. Karimi, V. Provenzano, C.L. Dennis, H. Wu, T. Comyn, J. Stevenson, I.S. Ronald, M. Reaney, Reorientation of magnetic dipoles at the antiferroelectric–paraelectric phase transition of Bi1−xNdxFeO3 (0.15 ≤ x ≤ 0.25). Phys. Rev. B 81, 020103R (2010)CrossRef
27.
Zurück zum Zitat J.S. Lee, R.J. De Angelis, X-ray diffraction patterns from anocrystalline binary alloys. Nanostruct. Mater. 7, 805–812 (1996)CrossRef J.S. Lee, R.J. De Angelis, X-ray diffraction patterns from anocrystalline binary alloys. Nanostruct. Mater. 7, 805–812 (1996)CrossRef
28.
Zurück zum Zitat A. Watcharapasorn, S. Jiansirisomboon, Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 34, 769–772 (2008)CrossRef A. Watcharapasorn, S. Jiansirisomboon, Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 34, 769–772 (2008)CrossRef
29.
Zurück zum Zitat F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, Multiferroic properties of Bi1−xDyxFeO3 nanoparticles. J. Appl. Phys. 106, 084312 (2009)CrossRef F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, Multiferroic properties of Bi1−xDyxFeO3 nanoparticles. J. Appl. Phys. 106, 084312 (2009)CrossRef
30.
Zurück zum Zitat J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. J. Alloys Compd. 496, 261–264 (2010)CrossRef J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. J. Alloys Compd. 496, 261–264 (2010)CrossRef
31.
Zurück zum Zitat P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)CrossRef P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)CrossRef
32.
Zurück zum Zitat A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2, 305–310 (2012)CrossRef A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2, 305–310 (2012)CrossRef
33.
Zurück zum Zitat M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006)CrossRef M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006)CrossRef
34.
Zurück zum Zitat S.K. Pradhan, Raman and electrical studies of multiferroic BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 3581–3586 (2013) S.K. Pradhan, Raman and electrical studies of multiferroic BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 3581–3586 (2013)
35.
Zurück zum Zitat P.J. Klar, T. Rentschler, Variation of the soft modes with composition in the Raman spectra of charge-compensated series of n = 2 and 3 Aurivillius phases. Solid State Commun. 103, 341–345 (1997)CrossRef P.J. Klar, T. Rentschler, Variation of the soft modes with composition in the Raman spectra of charge-compensated series of n = 2 and 3 Aurivillius phases. Solid State Commun. 103, 341–345 (1997)CrossRef
36.
Zurück zum Zitat G. Dong, G. Tann, W. Liu, A. Xia, H. Ren, Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method. Ceram. Int. 40, 1919–1925 (2014)CrossRef G. Dong, G. Tann, W. Liu, A. Xia, H. Ren, Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method. Ceram. Int. 40, 1919–1925 (2014)CrossRef
37.
Zurück zum Zitat A. Sacuto, J. Cayssol, P. Monod, D. Colson, Electronic Raman scattering on the under doped HgBa2Ca2Cu3O+δ8 high-Tc superconductor: the symmetry of the order parameter. Phys. Rev. B 61, 7122 (2000)CrossRef A. Sacuto, J. Cayssol, P. Monod, D. Colson, Electronic Raman scattering on the under doped HgBa2Ca2Cu3O+δ8 high-Tc superconductor: the symmetry of the order parameter. Phys. Rev. B 61, 7122 (2000)CrossRef
38.
Zurück zum Zitat Y.J. Jiang, L.Z. Zeng, R.P. Wang, Y. Zhu, Y.L. Liu, Fundamental and second-order Raman spectra of BaTiO3. J. Raman Spectrosc. 27, 31–34 (1996)CrossRef Y.J. Jiang, L.Z. Zeng, R.P. Wang, Y. Zhu, Y.L. Liu, Fundamental and second-order Raman spectra of BaTiO3. J. Raman Spectrosc. 27, 31–34 (1996)CrossRef
39.
Zurück zum Zitat M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, Evidence of spin-two phonon coupling and improved multiferroic behaviour of Bi1−xDyxFeO3 nanoparticles. Ceram. Int. 40, 13347–13356 (2014)CrossRef M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, Evidence of spin-two phonon coupling and improved multiferroic behaviour of Bi1−xDyxFeO3 nanoparticles. Ceram. Int. 40, 13347–13356 (2014)CrossRef
40.
Zurück zum Zitat P. Pandit, S. Satapathy, P.K. Gupta, V.G. Sathe, Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3. J. Appl. Phys. 106, 114105 (2009)CrossRef P. Pandit, S. Satapathy, P.K. Gupta, V.G. Sathe, Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3. J. Appl. Phys. 106, 114105 (2009)CrossRef
41.
Zurück zum Zitat M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.Y. Yang, Y.H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan, Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)CrossRef M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.Y. Yang, Y.H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan, Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)CrossRef
42.
Zurück zum Zitat C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRef C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRef
43.
Zurück zum Zitat S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef
44.
Zurück zum Zitat K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, P. Palkar, Enhancement in multiferroic properties of system with removal of La. Solid State Commun. 149, 188–191 (2009)CrossRef K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, P. Palkar, Enhancement in multiferroic properties of system with removal of La. Solid State Commun. 149, 188–191 (2009)CrossRef
45.
Zurück zum Zitat S.K. Singh, K. Maruyama, H. Ishiwara, Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91, 112913 (2007)CrossRef S.K. Singh, K. Maruyama, H. Ishiwara, Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91, 112913 (2007)CrossRef
46.
Zurück zum Zitat S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci.: Mater. Electron. 25, 3854–3861 (2014) S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci.: Mater. Electron. 25, 3854–3861 (2014)
47.
Zurück zum Zitat G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 92, 192905 (2008)CrossRef G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 92, 192905 (2008)CrossRef
48.
Zurück zum Zitat W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013)CrossRef W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013)CrossRef
49.
Zurück zum Zitat N. Li, J. Wu, Y. Jiang, Z. Xie, L. Zheng, Z.G. Ye, Structure and multiferroic properties of Bi(1−x)DyxFe0.90Mg0.05Ti0.05O3 solid solution. J. Appl. Phys. 113, 054102 (2013)CrossRef N. Li, J. Wu, Y. Jiang, Z. Xie, L. Zheng, Z.G. Ye, Structure and multiferroic properties of Bi(1−x)DyxFe0.90Mg0.05Ti0.05O3 solid solution. J. Appl. Phys. 113, 054102 (2013)CrossRef
50.
Zurück zum Zitat P. Uniyal, K.L. Yadav, Room temperature multiferroic properties of Eu doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009)CrossRef P. Uniyal, K.L. Yadav, Room temperature multiferroic properties of Eu doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009)CrossRef
51.
Zurück zum Zitat T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)CrossRef T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)CrossRef
Metadaten
Titel
Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3
verfasst von
M. Muneeswaran
Radhalayam Dhanalakshmi
N. V. Giridharan
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2909-3

Weitere Artikel der Ausgabe 6/2015

Journal of Materials Science: Materials in Electronics 6/2015 Zur Ausgabe

Neuer Inhalt