Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2017

15.08.2017

Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

verfasst von: Cheng Gu, Yanhong Wei, Renpei Liu, Fengyi Yu

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-dimensional cellular automaton–finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Yang, S.M. Xiong, and Z. Guo: Acta Mater., 2016, vol. 112, pp. 261–72.CrossRef M. Yang, S.M. Xiong, and Z. Guo: Acta Mater., 2016, vol. 112, pp. 261–72.CrossRef
2.
Zurück zum Zitat D. Szeliga, K. Kubiak, and J. Sieniawski: J. Mater. Process. Technol., 2016, vol. 234, pp. 18–26.CrossRef D. Szeliga, K. Kubiak, and J. Sieniawski: J. Mater. Process. Technol., 2016, vol. 234, pp. 18–26.CrossRef
3.
Zurück zum Zitat D.V. Alexandrov and P.K. Galenko: Phys.-Usp., 2014, vol. 57, pp. 771–86.CrossRef D.V. Alexandrov and P.K. Galenko: Phys.-Usp., 2014, vol. 57, pp. 771–86.CrossRef
4.
Zurück zum Zitat P.A. Molian and T.S. Srivatsan: J. Mater. Sci., 1990, vol. 25, pp. 3347–58.CrossRef P.A. Molian and T.S. Srivatsan: J. Mater. Sci., 1990, vol. 25, pp. 3347–58.CrossRef
5.
Zurück zum Zitat G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, and H. Nguyen-Thi: J. Cryst. Growth, 2015, vol. 417, pp. 25–30.CrossRef G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, and H. Nguyen-Thi: J. Cryst. Growth, 2015, vol. 417, pp. 25–30.CrossRef
6.
Zurück zum Zitat N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1–8.CrossRef N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1–8.CrossRef
7.
Zurück zum Zitat A.G. Murphy, W.U. Mirihanage, D.J. Browne, and R.H. Mathiesen: Acta Mater., 2015, vol. 95, pp. 83–89.CrossRef A.G. Murphy, W.U. Mirihanage, D.J. Browne, and R.H. Mathiesen: Acta Mater., 2015, vol. 95, pp. 83–89.CrossRef
8.
Zurück zum Zitat X. Zhan, Y. Wei, and Z. Dong: J. Mater. Process. Technol., 2008, vol. 208, pp. 1–8.CrossRef X. Zhan, Y. Wei, and Z. Dong: J. Mater. Process. Technol., 2008, vol. 208, pp. 1–8.CrossRef
9.
11.
Zurück zum Zitat J.A. Spittle and S.G.R. Brown: J. Mater. Sci., 1995, vol. 30, pp. 3989–94.CrossRef J.A. Spittle and S.G.R. Brown: J. Mater. Sci., 1995, vol. 30, pp. 3989–94.CrossRef
12.
Zurück zum Zitat M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.CrossRef M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.CrossRef
13.
14.
Zurück zum Zitat W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang: Comp. Mater. Sci., 2014, vol. 82, pp. 525–30.CrossRef W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang: Comp. Mater. Sci., 2014, vol. 82, pp. 525–30.CrossRef
15.
Zurück zum Zitat T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: Acta Mater., 2016, vol. 118, pp. 230–43.CrossRef T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: Acta Mater., 2016, vol. 118, pp. 230–43.CrossRef
16.
Zurück zum Zitat M.J.M. Krane, D.R. Johnson, and S. Raghavan: Appl. Math. Model., 2009, vol. 33, pp. 2234–47.CrossRef M.J.M. Krane, D.R. Johnson, and S. Raghavan: Appl. Math. Model., 2009, vol. 33, pp. 2234–47.CrossRef
17.
Zurück zum Zitat N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677–96.CrossRef N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677–96.CrossRef
18.
Zurück zum Zitat N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2002, vol. 180, pp. 471–96.CrossRef N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2002, vol. 180, pp. 471–96.CrossRef
19.
Zurück zum Zitat D. Li, R. Li and P. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971–82.CrossRef D. Li, R. Li and P. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971–82.CrossRef
20.
Zurück zum Zitat R. Siquieri, J. Rezende, J. Kundin, and H. Emmerich: Eur. Phys. J. Special Topics, 2009, vol. 177, pp. 193–205.CrossRef R. Siquieri, J. Rezende, J. Kundin, and H. Emmerich: Eur. Phys. J. Special Topics, 2009, vol. 177, pp. 193–205.CrossRef
21.
Zurück zum Zitat R. Xiao, Z. Wang, C. Zhu, L. Feng, and W. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 356–59.CrossRef R. Xiao, Z. Wang, C. Zhu, L. Feng, and W. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 356–59.CrossRef
22.
Zurück zum Zitat R. Rojas, T. Takaki, and M. Ohno: J. Comput. Phys., 2015, vol. 298, pp. 29–40.CrossRef R. Rojas, T. Takaki, and M. Ohno: J. Comput. Phys., 2015, vol. 298, pp. 29–40.CrossRef
23.
Zurück zum Zitat L. Yuan and P.D. Lee: Model. Simul. Mater. Sci., 2010, vol. 18, p. 055008.CrossRef L. Yuan and P.D. Lee: Model. Simul. Mater. Sci., 2010, vol. 18, p. 055008.CrossRef
24.
Zurück zum Zitat D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, and D. Raabe: Comput. Math. Appl., 2011, vol. 61, pp. 3585–92.CrossRef D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, and D. Raabe: Comput. Math. Appl., 2011, vol. 61, pp. 3585–92.CrossRef
25.
Zurück zum Zitat D. Sun, M. Zhu, S. Pan, and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755–67.CrossRef D. Sun, M. Zhu, S. Pan, and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755–67.CrossRef
26.
Zurück zum Zitat C. Gu, Y. Wei, X. Zhan, and Y. Li: Sci. Technol. Welding Joining, 2016, vol. 22, pp. 47–58.CrossRef C. Gu, Y. Wei, X. Zhan, and Y. Li: Sci. Technol. Welding Joining, 2016, vol. 22, pp. 47–58.CrossRef
27.
Zurück zum Zitat K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, and K. Fang: Model. Simul. Mater. Sci., 2014, vol. 22, p. 015006.CrossRef K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, and K. Fang: Model. Simul. Mater. Sci., 2014, vol. 22, p. 015006.CrossRef
28.
Zurück zum Zitat K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang: Comp. Mater. Sci., 2013, vol. 72, pp. 93–100.CrossRef K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang: Comp. Mater. Sci., 2013, vol. 72, pp. 93–100.CrossRef
29.
Zurück zum Zitat J.A. Warren and W.J. Boettinger: Acta Metall. Mater., 1995, vol. 43, pp. 689–703.CrossRef J.A. Warren and W.J. Boettinger: Acta Metall. Mater., 1995, vol. 43, pp. 689–703.CrossRef
30.
Zurück zum Zitat X.H. Wu, G. Wang, L.Z. Zhao, D.C. Zeng, and Z.W. Liu: Comp. Mater. Sci., 2016, vol. 117, pp. 286–93.CrossRef X.H. Wu, G. Wang, L.Z. Zhao, D.C. Zeng, and Z.W. Liu: Comp. Mater. Sci., 2016, vol. 117, pp. 286–93.CrossRef
31.
32.
33.
Zurück zum Zitat M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe: Model. Simul. Mater. Sci., 2014, vol. 22, p. 034006.CrossRef M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe: Model. Simul. Mater. Sci., 2014, vol. 22, p. 034006.CrossRef
34.
35.
Zurück zum Zitat L. Wei, X. Lin, M. Wang, and W. Huang: Comp. Mater. Sci., 2012, vol. 54, pp. 66–74.CrossRef L. Wei, X. Lin, M. Wang, and W. Huang: Comp. Mater. Sci., 2012, vol. 54, pp. 66–74.CrossRef
36.
Zurück zum Zitat J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 341–45.CrossRef J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 341–45.CrossRef
37.
Zurück zum Zitat J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.CrossRef J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.CrossRef
38.
Zurück zum Zitat L. Du and R. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2504–15. L. Du and R. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2504–15.
Metadaten
Titel
Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method
verfasst von
Cheng Gu
Yanhong Wei
Renpei Liu
Fengyi Yu
Publikationsdatum
15.08.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2017
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-1060-3

Weitere Artikel der Ausgabe 6/2017

Metallurgical and Materials Transactions B 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.