Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 5/2022

01.05.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139

verfasst von: N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The results of structural studies of ferritic–martensitic steels EK181 (Fe–12Cr–W–V–Ta–B–C) and ChS139 (Fe–12Cr–Ni–Mo–W–Nb–V–B–N–C) after aging at temperatures of 450, 550, 650, and 700°C for a period of 1000–22 000 h are presented. Optical and electron microscopy are used in the study. The following common trends are revealed for both steels: aging for up to 19 000 h at 450 and 550°C is characterized by a low rate of decomposition of the supersaturated solid solution and by the preservation of the structural parameters of the studied steels at the initial level; aging at 650 and 700°C initiates, starting from an exposure time of 1000 h, the softening processes accompanied by the formation of a subgrain structure and coagulation of carbides. The precipitation of the Fe2(Mo, W) Laves phase after aging at a temperature of 650°C is a distinctive feature of the structure of steel ChS139 compared to steel EK181.
Literatur
1.
Zurück zum Zitat R. Odette and S. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019). R. Odette and S. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019).
2.
Zurück zum Zitat R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nuclear Mater. 371, 37–52 (2007). CrossRef R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nuclear Mater. 371, 37–52 (2007). CrossRef
3.
Zurück zum Zitat M. V. Leont’eva-Smirnova, A. N. Agafonov, G. N. Ermolaev, A. G. Ioltukhovskii, E. M. Mozhanov, L. I. Reviznikov, V. V. Tsvelev, V. M. Chernov, T. M. Bulanova, V. N. Golovanov, Z. O. Ostrovskii, V. K. Shamardin, A. I. Blokhin, M. B. Ivanov, E. V. Kozlov, Yu. R. Kolobov, and B. K. Kardashev, “Microstructure and mechanical properties of low-activated ferritic-martensitic steel EK-181 (RUSFER-EK-181),” Perspektivnye Materialy, No. 6, 40–52 (2006). M. V. Leont’eva-Smirnova, A. N. Agafonov, G. N. Ermolaev, A. G. Ioltukhovskii, E. M. Mozhanov, L. I. Reviznikov, V. V. Tsvelev, V. M. Chernov, T. M. Bulanova, V. N. Golovanov, Z. O. Ostrovskii, V. K. Shamardin, A. I. Blokhin, M. B. Ivanov, E. V. Kozlov, Yu. R. Kolobov, and B. K. Kardashev, “Microstructure and mechanical properties of low-activated ferritic-martensitic steel EK-181 (RUSFER-EK-181),” Perspektivnye Materialy, No. 6, 40–52 (2006).
4.
Zurück zum Zitat N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov, T. A. Churyumova, P. V. Kotov, E. V. Tsvetkova, A. V. Mitroshenkov, and K. V. Prokhorenkov, “Optimization of technology for heat treatment of pipes made of ferritic-martensitic steels EK181, ChS139,” VANT. Ser.: Materialovedenie i Novye Materialy, No. 2, 45–58 (2013). N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov, T. A. Churyumova, P. V. Kotov, E. V. Tsvetkova, A. V. Mitroshenkov, and K. V. Prokhorenkov, “Optimization of technology for heat treatment of pipes made of ferritic-martensitic steels EK181, ChS139,” VANT. Ser.: Materialovedenie i Novye Materialy, No. 2, 45–58 (2013).
5.
Zurück zum Zitat V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, No. 5, 494–506 (2017). CrossRef V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, No. 5, 494–506 (2017). CrossRef
6.
Zurück zum Zitat V. M. Chernov, M. V. Leont’eva-Smirnova, E. M. Mozhanov, N. S. Nikolaeva, A. N. Tyumentsev, N. A. Polekhina, I. Yu. Litovchenko, and E. G. Astafurova, “Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures,” Tech. Phys. 61, 209–214 (2016). CrossRef V. M. Chernov, M. V. Leont’eva-Smirnova, E. M. Mozhanov, N. S. Nikolaeva, A. N. Tyumentsev, N. A. Polekhina, I. Yu. Litovchenko, and E. G. Astafurova, “Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures,” Tech. Phys. 61, 209–214 (2016). CrossRef
7.
Zurück zum Zitat X. Xiao, G. Liu, B. Hu, J. Wang, and W. Ma, “Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C,” J. Mater. Sci. Technol. 31, No. 3, 311–319 (2015). CrossRef X. Xiao, G. Liu, B. Hu, J. Wang, and W. Ma, “Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C,” J. Mater. Sci. Technol. 31, No. 3, 311–319 (2015). CrossRef
8.
Zurück zum Zitat X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, and K. Yan, “Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging,” Mater. Sci. Eng., A 586, 253–258 (2013). X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, and K. Yan, “Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging,” Mater. Sci. Eng., A 586, 253–258 (2013).
9.
Zurück zum Zitat H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, “Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels,” Mater. Lett. 63, 2423–2425 (2009). CrossRef H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, “Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels,” Mater. Lett. 63, 2423–2425 (2009). CrossRef
10.
Zurück zum Zitat K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, “Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system,” Fusion Eng. Des. 86, 2895–2899 (2011). CrossRef K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, “Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system,” Fusion Eng. Des. 86, 2895–2899 (2011). CrossRef
11.
Zurück zum Zitat P. Hu, W. Yan, W. Sha, W. Wang, Y. Shan, and K. Yan, “Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep,” J. Mater. Sci. Technol. 27, No. 4, 344–351 (2011). CrossRef P. Hu, W. Yan, W. Sha, W. Wang, Y. Shan, and K. Yan, “Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep,” J. Mater. Sci. Technol. 27, No. 4, 344–351 (2011). CrossRef
12.
Zurück zum Zitat Y. Xu, Y. Nie, M. Wang, W. Li, and X. Jin, “The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging,” Acta Mater. 131, 110–122 (2017). CrossRef Y. Xu, Y. Nie, M. Wang, W. Li, and X. Jin, “The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging,” Acta Mater. 131, 110–122 (2017). CrossRef
13.
Zurück zum Zitat K. A. Lanskaya, High-Chromium Heat Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian]. K. A. Lanskaya, High-Chromium Heat Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian].
Metadaten
Titel
Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139
verfasst von
N. S. Nikolaeva
M. V. Leont’eva-Smirnova
E. M. Mozhanov
Publikationsdatum
01.05.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050118

Weitere Artikel der Ausgabe 5/2022

Physics of Metals and Metallography 5/2022 Zur Ausgabe