Skip to main content
Erschienen in: Journal of Materials Science 4/2019

25.10.2018 | Metals

Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at.%) alloy

verfasst von: Ofer Beeri, Sung-Il Baik, Avraham I. Bram, Michael Shandalov, David N. Seidman, David C. Dunand

Erschienen in: Journal of Materials Science | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The age hardening response of Al–0.09Sc (at.%), to which trace amounts (< 100 ppm) of actinides (An = U or Th) were added, is studied by microhardness, conductivity, transmission electron microscopy, and atom probe tomography (APT). Peak-age hardening at 300 °C is associated with a high number density of nanoscale L12-Al3(Sc1 − xAnx) precipitates with core/shell structure. The first alloy Al–0.09Sc–0.006U (at.%) has a peak microhardness similar to that of binary Al–0.09Sc (at.%), but a shorter incubation period for hardening which is consistent with U diffusing faster than Sc in Al and acting as nucleant for Al3Sc. This is confirmed by APT measurements of precipitate composition, Al3(Sc0.8U0.2), showing that U has high solubility in Al3Sc precipitates and segregates at their core. The second alloy, Al–0.09Sc–0.008Th (at.%), exhibits Th-poor Al3(Sc0.98Th0.02) precipitates with Th segregation in their shells and it has microhardness evolution undistinguishable from binary Al–0.09Sc; this is indicative of low solubility of Th in L12-Al3Sc and/or low diffusivity of Th in Al. These two primordial actinides -U and Th- show different abilities to coprecipitate with Al3Sc precipitate in aluminum, they, however, both improve coarsening resistance after 143 days at 300 °C by forming core/shell structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Toropova L, Eskin D, Kharakterova M, Dobatkina T (1998) Advanced aluminum alloys containing scandium. Routledge, London Toropova L, Eskin D, Kharakterova M, Dobatkina T (1998) Advanced aluminum alloys containing scandium. Routledge, London
2.
Zurück zum Zitat Fujikawa SI (1997) Impurity diffusion of scandium in aluminum. Defect Diffus Forum 143:115–120CrossRef Fujikawa SI (1997) Impurity diffusion of scandium in aluminum. Defect Diffus Forum 143:115–120CrossRef
3.
Zurück zum Zitat Novotny GM, Ardell AJ (2001) Precipitation of Al3Sc in binary Al–Sc alloys. Mater Sci Eng A Struct 318:144–154CrossRef Novotny GM, Ardell AJ (2001) Precipitation of Al3Sc in binary Al–Sc alloys. Mater Sci Eng A Struct 318:144–154CrossRef
4.
Zurück zum Zitat Hyland RW (1992) Homogeneous nucleation kinetics of Al3Sc in a dilute Al–Sc alloy. Metall Trans A 23:1947–1955CrossRef Hyland RW (1992) Homogeneous nucleation kinetics of Al3Sc in a dilute Al–Sc alloy. Metall Trans A 23:1947–1955CrossRef
5.
Zurück zum Zitat Asta M, Ozoliņš V (2001) Structural, vibrational, and thermodynamic properties of Al–Sc alloys and intermetallic compounds. Phys Rev B 64:094104CrossRef Asta M, Ozoliņš V (2001) Structural, vibrational, and thermodynamic properties of Al–Sc alloys and intermetallic compounds. Phys Rev B 64:094104CrossRef
6.
Zurück zum Zitat Fuller CB, Seidman DN, Dunand DC (1999) Creep properties of coarse-grained Al(Sc) alloys at 300 degrees C. Scripta Mater 40:691–696CrossRef Fuller CB, Seidman DN, Dunand DC (1999) Creep properties of coarse-grained Al(Sc) alloys at 300 degrees C. Scripta Mater 40:691–696CrossRef
7.
Zurück zum Zitat Marquis EA, Seidman DN, Dunand DC (2002) Creep of precipitation-strengthened Al(Sc) alloys. In: Mishra RS, Earthman JC, Raj SV (eds) Creep deformation: fundamentals and applications. TMS The Minerals, Metals & Materials Society, Pittsburgh, p 299–308 Marquis EA, Seidman DN, Dunand DC (2002) Creep of precipitation-strengthened Al(Sc) alloys. In: Mishra RS, Earthman JC, Raj SV (eds) Creep deformation: fundamentals and applications. TMS The Minerals, Metals & Materials Society, Pittsburgh, p 299–308
8.
Zurück zum Zitat Harada Y, Dunand DC (2003) Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scripta Mater 48:219–222CrossRef Harada Y, Dunand DC (2003) Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scripta Mater 48:219–222CrossRef
9.
Zurück zum Zitat Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef
10.
Zurück zum Zitat Iwamura S, Miura Y (2004) Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater 52:591–600CrossRef Iwamura S, Miura Y (2004) Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater 52:591–600CrossRef
11.
Zurück zum Zitat Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—chemical compositions of Al3(Sc1 − xZrx) Precipitatesy. Acta Mater 53:5401–5413CrossRef Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—chemical compositions of Al3(Sc1 − xZrx) Precipitatesy. Acta Mater 53:5401–5413CrossRef
12.
Zurück zum Zitat Fuller CB, Seldman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) Alloys: part II-Coarsening of Al3(Sc1 − XZrx) precipitates. Acta Mater 53:5415–5428CrossRef Fuller CB, Seldman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) Alloys: part II-Coarsening of Al3(Sc1 − XZrx) precipitates. Acta Mater 53:5415–5428CrossRef
13.
Zurück zum Zitat Marquis EA, Seidman DN (2005) Coarsening kinetics of nanoscale Al3Sc precipitates in An Al–Mg–Sc alloy. Acta Mater 53:4259–4268CrossRef Marquis EA, Seidman DN (2005) Coarsening kinetics of nanoscale Al3Sc precipitates in An Al–Mg–Sc alloy. Acta Mater 53:4259–4268CrossRef
14.
Zurück zum Zitat Watanabe C, Watanabe D, Monzen R (2006) Coarsening behavior of Al3Sc precipitates in an Al–Mg–Sc alloy. Mater Trans 47:2285–2291CrossRef Watanabe C, Watanabe D, Monzen R (2006) Coarsening behavior of Al3Sc precipitates in an Al–Mg–Sc alloy. Mater Trans 47:2285–2291CrossRef
15.
Zurück zum Zitat Simonovic D, Sluiter MHF (2011) Predicting the benefits of adding ternary elements to Al–Sc alloys. In: MRS proceedings 979: 0979-HH0911-0935 Simonovic D, Sluiter MHF (2011) Predicting the benefits of adding ternary elements to Al–Sc alloys. In: MRS proceedings 979: 0979-HH0911-0935
16.
Zurück zum Zitat Zhang H, Wang S (2011) The Structural stabilities of Al3(Sc1 − XMx) by first-principles calculations. Comput Mater Sci 50:2162–2166CrossRef Zhang H, Wang S (2011) The Structural stabilities of Al3(Sc1 − XMx) by first-principles calculations. Comput Mater Sci 50:2162–2166CrossRef
17.
Zurück zum Zitat Karnesky RA, Seidman DN, Dunand DC (2006) Creep of Al–Sc microalloys with rare-earth element additions, aluminium alloys 2006, Pts 1 and 2 519–521:1035–1040 Karnesky RA, Seidman DN, Dunand DC (2006) Creep of Al–Sc microalloys with rare-earth element additions, aluminium alloys 2006, Pts 1 and 2 519–521:1035–1040
18.
Zurück zum Zitat Harada Y, Dunand DC (2007) Microstructure and hardness of scandium trialuminide with ternary rare-earth additions, Thermec 2006, Pts 1–5 539–543: 1565–1570 Harada Y, Dunand DC (2007) Microstructure and hardness of scandium trialuminide with ternary rare-earth additions, Thermec 2006, Pts 1–5 539–543: 1565–1570
19.
Zurück zum Zitat De Luca A, Dunand DC, Seidman DN (2018) Scandium-enriched nanoprecipitates in aluminum providing enhanced coarsening and creep resistance. Light Metals 2018:1589–1594 De Luca A, Dunand DC, Seidman DN (2018) Scandium-enriched nanoprecipitates in aluminum providing enhanced coarsening and creep resistance. Light Metals 2018:1589–1594
20.
Zurück zum Zitat Krug ME, Werber A, Dunand DC, Seidman DN (2010) Core-shell nanoscale precipitates in Al–0.06 at.%Sc microalloyed with Tb, Ho, Tm or Lu. Acta Materialia 58:134–145CrossRef Krug ME, Werber A, Dunand DC, Seidman DN (2010) Core-shell nanoscale precipitates in Al–0.06 at.%Sc microalloyed with Tb, Ho, Tm or Lu. Acta Materialia 58:134–145CrossRef
21.
Zurück zum Zitat Van Dalen ME, Dunand DC, Seidman DN (2011) Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at.%) alloys. Acta Mater 59:5224–5237CrossRef Van Dalen ME, Dunand DC, Seidman DN (2011) Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at.%) alloys. Acta Mater 59:5224–5237CrossRef
22.
Zurück zum Zitat Harada Y, Dunand DC (2009) Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics 17:17–24CrossRef Harada Y, Dunand DC (2009) Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics 17:17–24CrossRef
23.
Zurück zum Zitat Karnesky RA, van Dalen ME, Dunand DC, Seidman DN (2006) Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.%Sc alloy. Scripta Mater 55:437–440CrossRef Karnesky RA, van Dalen ME, Dunand DC, Seidman DN (2006) Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.%Sc alloy. Scripta Mater 55:437–440CrossRef
24.
Zurück zum Zitat Sawtell RR MJ (1988) In: Kim Y-W, Griffith WM (eds) Dispersion strengthened aluminum alloys, TMS, Warrendale Sawtell RR MJ (1988) In: Kim Y-W, Griffith WM (eds) Dispersion strengthened aluminum alloys, TMS, Warrendale
25.
Zurück zum Zitat van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081–4089CrossRef van Dalen ME, Karnesky RA, Cabotaje JR, Dunand DC, Seidman DN (2009) Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta Mater 57:4081–4089CrossRef
26.
Zurück zum Zitat Vo NQ, Dunand DC, Seidman DN (2014) Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Materialia 63:73–85CrossRef Vo NQ, Dunand DC, Seidman DN (2014) Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Materialia 63:73–85CrossRef
27.
Zurück zum Zitat Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Metallkd 97:246–265CrossRef Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Metallkd 97:246–265CrossRef
28.
Zurück zum Zitat Sarapää O, Lauri LS, Ahtola T, Al-Ani T, Grönholm S, Kärkkäinen N, Lintinen P, Torppa A, Turunen P (2015) Discovery potential of hi-tech metals and critical minerals in Finland. Tutkimusraportti - Geologian Tutkimuskeskus 219:1–54 Sarapää O, Lauri LS, Ahtola T, Al-Ani T, Grönholm S, Kärkkäinen N, Lintinen P, Torppa A, Turunen P (2015) Discovery potential of hi-tech metals and critical minerals in Finland. Tutkimusraportti - Geologian Tutkimuskeskus 219:1–54
29.
Zurück zum Zitat Lash LD, Ross JR (1961) Scandium recovery from uranium solutions. Jom-Us 13:555–558CrossRef Lash LD, Ross JR (1961) Scandium recovery from uranium solutions. Jom-Us 13:555–558CrossRef
30.
Zurück zum Zitat Altinsel Y, Topkaya Y, Kaya Ş, Şentürk B (2018) Extraction of scandium from lateritic nickel–cobalt ore leach solution by ion exchange: a special study and literature review on previous works. Light Metals 2018:1545–1553 Altinsel Y, Topkaya Y, Kaya Ş, Şentürk B (2018) Extraction of scandium from lateritic nickel–cobalt ore leach solution by ion exchange: a special study and literature review on previous works. Light Metals 2018:1545–1553
31.
Zurück zum Zitat Rough FA, Bauer AA (1958) Constitution of uranium and thorium alloys. Battelle Memorial Institute, ColumbusCrossRef Rough FA, Bauer AA (1958) Constitution of uranium and thorium alloys. Battelle Memorial Institute, ColumbusCrossRef
32.
Zurück zum Zitat Gafvert T, Pagels J, Holm E (2003) Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes. Radiat Prot Dosim 103:349–357CrossRef Gafvert T, Pagels J, Holm E (2003) Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes. Radiat Prot Dosim 103:349–357CrossRef
33.
Zurück zum Zitat Costa L (2015) Welding with non-consumable thoriated tungsten electrodes. Weld World 59:145–150CrossRef Costa L (2015) Welding with non-consumable thoriated tungsten electrodes. Weld World 59:145–150CrossRef
34.
Zurück zum Zitat Harada Y, Dunand DC (2002) Microstructure of Al(3)Sc with ternary transition-metal additions. Mater Sci Eng A Struct 329:686–695CrossRef Harada Y, Dunand DC (2002) Microstructure of Al(3)Sc with ternary transition-metal additions. Mater Sci Eng A Struct 329:686–695CrossRef
35.
Zurück zum Zitat Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Instrum 78:1–20CrossRef Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Instrum 78:1–20CrossRef
36.
Zurück zum Zitat Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158CrossRef Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158CrossRef
37.
Zurück zum Zitat Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) atom probe field ion microscopy. Clarendon Press, Oxford Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) atom probe field ion microscopy. Clarendon Press, Oxford
38.
Zurück zum Zitat Hellman OC, Vandenbroucke JA, Rusing J, Isheim D, Seidman DN (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6:437–444 Hellman OC, Vandenbroucke JA, Rusing J, Isheim D, Seidman DN (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6:437–444
39.
Zurück zum Zitat Kassner ME, Adler PH, Adamson MG, Peterson DE (1989) Evaluation and thermodynamic analysis of phase equilibria in the U-Al system. J Nucl Mater 167:160–168CrossRef Kassner ME, Adler PH, Adamson MG, Peterson DE (1989) Evaluation and thermodynamic analysis of phase equilibria in the U-Al system. J Nucl Mater 167:160–168CrossRef
40.
Zurück zum Zitat Roy PR (1964) Determination of a-aluminium solid solubility limits in the aluminium–uranium and aluminium–plutonium systems. J Nucl Mater 11:59–66CrossRef Roy PR (1964) Determination of a-aluminium solid solubility limits in the aluminium–uranium and aluminium–plutonium systems. J Nucl Mater 11:59–66CrossRef
41.
Zurück zum Zitat Buckle H (1946) Determination of free energy through microhardness testing. Metallforschung 37:43–47 Buckle H (1946) Determination of free energy through microhardness testing. Metallforschung 37:43–47
42.
Zurück zum Zitat Booth-Morrison C, Dunand DC, Seidman DN (2011) Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er Alloys. Acta Mater 59:7029–7042CrossRef Booth-Morrison C, Dunand DC, Seidman DN (2011) Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er Alloys. Acta Mater 59:7029–7042CrossRef
43.
Zurück zum Zitat Karnesky R (2007) Mechanical properties and microstructure of Al–Sc with rareearth element or Al2O3 additions. Northwestern University, Evanston Karnesky R (2007) Mechanical properties and microstructure of Al–Sc with rareearth element or Al2O3 additions. Northwestern University, Evanston
44.
Zurück zum Zitat Karnesky RA, Dunand DC, Seidman DN (2009) Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater 57:4022–4031CrossRef Karnesky RA, Dunand DC, Seidman DN (2009) Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater 57:4022–4031CrossRef
45.
Zurück zum Zitat Voorhees PW, McFadden GB, Johnson WC (1992) On the morphological development of 2nd-phase particles in elastically-stressed solids. Acta Metall Mater 40:2979–2992CrossRef Voorhees PW, McFadden GB, Johnson WC (1992) On the morphological development of 2nd-phase particles in elastically-stressed solids. Acta Metall Mater 40:2979–2992CrossRef
46.
Zurück zum Zitat Mao Z, Chen W, Seidman DN, Wolverton C (2011) First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys. Acta Mater 59:3012–3023CrossRef Mao Z, Chen W, Seidman DN, Wolverton C (2011) First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys. Acta Mater 59:3012–3023CrossRef
47.
Zurück zum Zitat Asta M, Foiles SM, Quong AA (1998) first-principles calculations of bulk and interfacial thermodynamic properties for Fcc-based Al–Sc alloys. Phys Rev B 57:11265–11275CrossRef Asta M, Foiles SM, Quong AA (1998) first-principles calculations of bulk and interfacial thermodynamic properties for Fcc-based Al–Sc alloys. Phys Rev B 57:11265–11275CrossRef
48.
Zurück zum Zitat Marquis EA, Seidman DN, Asta M, Woodward C (2006) Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater 54:119–130CrossRef Marquis EA, Seidman DN, Asta M, Woodward C (2006) Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater 54:119–130CrossRef
49.
Zurück zum Zitat Kolli RP, Seidman DN (2008) The temporal evolution of the decomposition of a concentrated multicomponent FeCu based steel. Acta Mater 56:2073–2088CrossRef Kolli RP, Seidman DN (2008) The temporal evolution of the decomposition of a concentrated multicomponent FeCu based steel. Acta Mater 56:2073–2088CrossRef
50.
Zurück zum Zitat Hyde JM, English CA (2001) In Lucas GE, Snead L, Kirk MA, Ellman RG (eds) Materials research society symposia proceedings, Warrendale Hyde JM, English CA (2001) In Lucas GE, Snead L, Kirk MA, Ellman RG (eds) Materials research society symposia proceedings, Warrendale
51.
Zurück zum Zitat Gault B, Moody MP, Cairney Julie M, Ringer SP (2012) Atom probe microscopy. Springer, BerlinCrossRef Gault B, Moody MP, Cairney Julie M, Ringer SP (2012) Atom probe microscopy. Springer, BerlinCrossRef
52.
Zurück zum Zitat Beeri O, Dunand DC, Seidman DN (2010) Roles of impurities on precipitation kinetics of dilute Al–Sc alloys. Mater Sci Eng A 527:3501–3509CrossRef Beeri O, Dunand DC, Seidman DN (2010) Roles of impurities on precipitation kinetics of dilute Al–Sc alloys. Mater Sci Eng A 527:3501–3509CrossRef
53.
Zurück zum Zitat Ramunni VP (2014) Diffusion behavior in nickel–aluminum and aluminum–uranium diluted alloys. Comput Mater Sci 93:112–124CrossRef Ramunni VP (2014) Diffusion behavior in nickel–aluminum and aluminum–uranium diluted alloys. Comput Mater Sci 93:112–124CrossRef
54.
Zurück zum Zitat Li ZS, Liu XJ, Wen MZ, Wang CP, Tang AT, Pan FS (2010) Thermodynamic assessments of the Al–Th and Th–Zn systems. J Nucl Mater 396:170–175CrossRef Li ZS, Liu XJ, Wen MZ, Wang CP, Tang AT, Pan FS (2010) Thermodynamic assessments of the Al–Th and Th–Zn systems. J Nucl Mater 396:170–175CrossRef
55.
Zurück zum Zitat Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN (2010) Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. acta Mater 58:5184–5195CrossRef Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN (2010) Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. acta Mater 58:5184–5195CrossRef
56.
Zurück zum Zitat Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K (2004) Three dimensional atom probe investigation on the formation of Al3 (Sc, Zr)-dispersoids in aluminium alloys. Scripta Mater 51:333–337CrossRef Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K (2004) Three dimensional atom probe investigation on the formation of Al3 (Sc, Zr)-dispersoids in aluminium alloys. Scripta Mater 51:333–337CrossRef
57.
Zurück zum Zitat Kim K, Bobel A, Baik S-I, Walker M, Voorhees PW, Olson GB (2018) Enhanced coarsening resistance of Q-phase in aluminum alloys by the addition of slow diffusing solutes. Mater Sci Eng A 735:318–323CrossRef Kim K, Bobel A, Baik S-I, Walker M, Voorhees PW, Olson GB (2018) Enhanced coarsening resistance of Q-phase in aluminum alloys by the addition of slow diffusing solutes. Mater Sci Eng A 735:318–323CrossRef
Metadaten
Titel
Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at.%) alloy
verfasst von
Ofer Beeri
Sung-Il Baik
Avraham I. Bram
Michael Shandalov
David N. Seidman
David C. Dunand
Publikationsdatum
25.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3036-3

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Science 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.