Skip to main content
Erschienen in: Meccanica 12/2016

03.10.2016 | 50th Anniversary of Meccanica

Effect of void cluster on ductile failure evolution

verfasst von: Viggo Tvergaard

Erschienen in: Meccanica | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the voids are parallel cylindrical holes. Clusters with different numbers of voids are compared with the growth of a single void, such that the total initial volume of the voids, and thus also the void volume fractions, are the same for the clusters and the single void. In the comparison it is essential that local void coalescence inside the clusters is accounted for, since this allows for considering the rate of growth of the single larger void that results from coalescence in the cluster. To obtain a parametric understanding, different transverse stresses on the unit cell are considered to see the influence of different levels of stress triaxiality. Also considered are different initial ratios of the void spacing to the void radius inside the clusters. And results are shown for different levels of strain hardening in the material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bandstra JP, Koss DA (2008) On the influence of void clusters on void growth and coalescence during ductile fracture. Acta Mater 56:4429–4439CrossRef Bandstra JP, Koss DA (2008) On the influence of void clusters on void growth and coalescence during ductile fracture. Acta Mater 56:4429–4439CrossRef
2.
Zurück zum Zitat Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305CrossRef Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305CrossRef
3.
Zurück zum Zitat Benzerga AA, Leblond J-B, Needleman A, Tvergaard V (2016) Ductile failure modelling. Int J Fracture (In press) Benzerga AA, Leblond J-B, Needleman A, Tvergaard V (2016) Ductile failure modelling. Int J Fracture (In press)
4.
Zurück zum Zitat Chiantoni G, Comi C, Mariani S, Bonora N (2014) Experimental assessment of ductile damage in P91 steel at high temperature. Int J Damage Mech 23(4):567–587CrossRef Chiantoni G, Comi C, Mariani S, Bonora N (2014) Experimental assessment of ductile damage in P91 steel at high temperature. Int J Damage Mech 23(4):567–587CrossRef
5.
Zurück zum Zitat Danas K, Castaneda PP (2009) A finite-strain model for anisotropic viscoplastic media: I—theory. Eur J Mech A/Solids 28:387–401MathSciNetCrossRefMATH Danas K, Castaneda PP (2009) A finite-strain model for anisotropic viscoplastic media: I—theory. Eur J Mech A/Solids 28:387–401MathSciNetCrossRefMATH
6.
Zurück zum Zitat Danas K, Castaneda PP (2009) A finite-strain model for anisotropic viscoplastic media: II—applications. Eur J Mech A/Solids 28:402–416MathSciNetCrossRefMATH Danas K, Castaneda PP (2009) A finite-strain model for anisotropic viscoplastic media: II—applications. Eur J Mech A/Solids 28:402–416MathSciNetCrossRefMATH
7.
Zurück zum Zitat Garrison WM Jr, Moody NR (1987) Ductile fracture. J Phys Chem Solids 48(11):1035–1074ADSCrossRef Garrison WM Jr, Moody NR (1987) Ductile fracture. J Phys Chem Solids 48(11):1035–1074ADSCrossRef
8.
Zurück zum Zitat Geltmacher AB, Koss DA, Matic P, Stout MG (1996) A modeling study of the effect of stress state on void linking during ductile fracture. Acta Mater 44:2201–2210CrossRef Geltmacher AB, Koss DA, Matic P, Stout MG (1996) A modeling study of the effect of stress state on void linking during ductile fracture. Acta Mater 44:2201–2210CrossRef
9.
Zurück zum Zitat Gologanu M, Leblond J, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. Continuum micromechanics. Springer, Berlin, pp 61–106CrossRef Gologanu M, Leblond J, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. Continuum micromechanics. Springer, Berlin, pp 61–106CrossRef
10.
Zurück zum Zitat Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth—I. yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRef Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth—I. yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRef
11.
Zurück zum Zitat Hutchinson JW (1973) Finite strain analysis of elastic-plastic solids and structures. In: Hartung RF (ed) Numerical solution of nonlinear structural problems. ASME, New York, p 17 Hutchinson JW (1973) Finite strain analysis of elastic-plastic solids and structures. In: Hartung RF (ed) Numerical solution of nonlinear structural problems. ASME, New York, p 17
12.
Zurück zum Zitat McClintock FA (1968) A criterion for ductile fracture by growth of holes. J Appl Mech 35:363–371CrossRef McClintock FA (1968) A criterion for ductile fracture by growth of holes. J Appl Mech 35:363–371CrossRef
13.
Zurück zum Zitat Nielsen KL, Dahl J, Tvergaard V (2012) Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D. Int J Fract 177:97–108CrossRef Nielsen KL, Dahl J, Tvergaard V (2012) Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D. Int J Fract 177:97–108CrossRef
14.
Zurück zum Zitat Ohno N, Hutchinson JW (1984) Plastic flow localization due to non-uniform void distribution. J Mech Phys Solids 32(1):63–85ADSCrossRefMATH Ohno N, Hutchinson JW (1984) Plastic flow localization due to non-uniform void distribution. J Mech Phys Solids 32(1):63–85ADSCrossRefMATH
15.
Zurück zum Zitat Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512ADSCrossRefMATH Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512ADSCrossRefMATH
16.
Zurück zum Zitat Pedersen TØ (1998) Remeshing in analysis of large plastic deformations. Comput Struct 67:279–288CrossRefMATH Pedersen TØ (1998) Remeshing in analysis of large plastic deformations. Comput Struct 67:279–288CrossRefMATH
17.
Zurück zum Zitat Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217ADSCrossRef Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217ADSCrossRef
18.
Zurück zum Zitat Scheyvaerts F, Onck PR, Bréchet Y, Pardoen T (2006) Void growth and coalescence under general loading conditions. Report, Université catholique de Louvain Scheyvaerts F, Onck PR, Bréchet Y, Pardoen T (2006) Void growth and coalescence under general loading conditions. Report, Université catholique de Louvain
19.
Zurück zum Zitat Scheyvaerts F, Onck PR, Tekoglu C, Pardoen T (2011) The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59:373–397ADSCrossRefMATH Scheyvaerts F, Onck PR, Tekoglu C, Pardoen T (2011) The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59:373–397ADSCrossRefMATH
20.
Zurück zum Zitat Thomson CIA, Worswick MJ, Pilkey AK, Lloyd DJ, Burger D (1999) Modeling void nucleation and growth within periodic clusters of particles. J Mech Phys Solids 47:1–26ADSCrossRefMATH Thomson CIA, Worswick MJ, Pilkey AK, Lloyd DJ, Burger D (1999) Modeling void nucleation and growth within periodic clusters of particles. J Mech Phys Solids 47:1–26ADSCrossRefMATH
21.
Zurück zum Zitat Thomson CIA, Worswick MJ, Pilkey AK, Lloyd DJ (2003) Void coalescence within periodic clusters of particles. J Mech Phys Solids 51:127–146ADSCrossRefMATH Thomson CIA, Worswick MJ, Pilkey AK, Lloyd DJ (2003) Void coalescence within periodic clusters of particles. J Mech Phys Solids 51:127–146ADSCrossRefMATH
22.
Zurück zum Zitat Tinet H, Klöcker H, Le Coze J (2004) Damage analysis during hot deformation of a resulfurized stainless steel. Acta Mater 52:3825–3842CrossRef Tinet H, Klöcker H, Le Coze J (2004) Damage analysis during hot deformation of a resulfurized stainless steel. Acta Mater 52:3825–3842CrossRef
23.
Zurück zum Zitat Tvergaard V (1976) Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells. J Mech Phys Solids 24:291ADSCrossRef Tvergaard V (1976) Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells. J Mech Phys Solids 24:291ADSCrossRef
24.
Zurück zum Zitat Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRef Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407CrossRef
25.
Zurück zum Zitat Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151CrossRefMATH Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151CrossRefMATH
26.
Zurück zum Zitat Tvergaard V (1997) Studies of void growth in a thin ductile layer between ceramics. Comput Mech 20:186–191CrossRefMATH Tvergaard V (1997) Studies of void growth in a thin ductile layer between ceramics. Comput Mech 20:186–191CrossRefMATH
27.
Zurück zum Zitat Tvergaard V (2004) On fatigue crack growth in ductile materials by cracktip blunting. J Mech Phys Solids 52:2149–2166ADSCrossRefMATH Tvergaard V (2004) On fatigue crack growth in ductile materials by cracktip blunting. J Mech Phys Solids 52:2149–2166ADSCrossRefMATH
28.
Zurück zum Zitat Tvergaard V (2007) Discrete modelling of ductile crack growth by void growth to coalescence. Int J Fract 148:1–12CrossRefMATH Tvergaard V (2007) Discrete modelling of ductile crack growth by void growth to coalescence. Int J Fract 148:1–12CrossRefMATH
29.
Zurück zum Zitat Tvergaard V (2008) Shear deformation of voids with contact modeled by internal pressure. Int J Mech Sci 50:1459–1465CrossRefMATH Tvergaard V (2008) Shear deformation of voids with contact modeled by internal pressure. Int J Mech Sci 50:1459–1465CrossRefMATH
30.
31.
Zurück zum Zitat Tvergaard V (2012) Effect of stress-state and spacing on voids in a shear-field. Int J Solids Struct 49:3047–3054CrossRef Tvergaard V (2012) Effect of stress-state and spacing on voids in a shear-field. Int J Solids Struct 49:3047–3054CrossRef
32.
Zurück zum Zitat Tvergaard V, Hutchinson JW (2002) Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. Int J Solids Struct 39:3581–3597CrossRefMATH Tvergaard V, Hutchinson JW (2002) Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. Int J Solids Struct 39:3581–3597CrossRefMATH
33.
Zurück zum Zitat Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169CrossRef Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169CrossRef
34.
Zurück zum Zitat Tvergaard V, Needleman A (1992) Effect of crack meandering on dynamic, ductile fracture. J Mech Phys Solids 40:447–471ADSCrossRef Tvergaard V, Needleman A (1992) Effect of crack meandering on dynamic, ductile fracture. J Mech Phys Solids 40:447–471ADSCrossRef
35.
Zurück zum Zitat Tvergaard V, Needleman A (2006) Three dimensional microstructural effects on plane strain ductile crack growth. Int J Solids Struct 43:6165–6179CrossRefMATH Tvergaard V, Needleman A (2006) Three dimensional microstructural effects on plane strain ductile crack growth. Int J Solids Struct 43:6165–6179CrossRefMATH
Metadaten
Titel
Effect of void cluster on ductile failure evolution
verfasst von
Viggo Tvergaard
Publikationsdatum
03.10.2016
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 12/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0537-5

Weitere Artikel der Ausgabe 12/2016

Meccanica 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.