Skip to main content
Erschienen in: Cellulose 5/2016

20.07.2016 | Original Paper

Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal

verfasst von: Quim Tarrés, Helena Oliver-Ortega, Miquel Llop, M. Àngels Pèlach, Marc Delgado-Aguilar, Pere Mutjé

Erschienen in: Cellulose | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spilled oil in seas has a direct impact on the environment and biodiversity. Moreover, there is no clear relationship between the amount of oil in the aquatic environment and its impact, since it mainly depends on the time and season that the oil is spilled. Nowadays, there are several techniques to clean up and recover oil from the sea, including the use of microorganisms, chemicals, controlled burning, dispersants and solidifiers, among others. Sometimes, unfortunately, the best option is to watch and wait for natural attenuation. Cellulose nanofibers have potential environmental applications due to their availability, light weight, mechanical and optical properties, and renewability. Several studies have dealt with modification of their hydrophilic character through silanation and acetylation. Both treatments, despite having a significant impact on the environment, are not plausible on a large scale because of the cost of chemicals and complexity of the modification. In this sense, the present work aims to develop hydrophobic nanocellulose-based aerogels from bleached kraft eucalyptus fibers modified with alkyl ketene dimers. For this, an experimental batch of 24 aerogels was prepared, including three types of CNF (TEMPO-oxidized, enzymatically hydrolyzed and mechanical) and eight modification degrees. The obtained aerogels were characterized in terms of morphology, hydrophilicity and water–oil absorption capacity under static and dynamic conditions, as well as their suitability for recycling and reuse for selective oil removal. The results showed that it is possible to obtain 3D-structured aerogels with a high oil absorption capacity by a simple and presumably low-cost methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRef Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRef
Zurück zum Zitat Ayadi F et al (2016) Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydr Polym 149:217–223CrossRef Ayadi F et al (2016) Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose. Carbohydr Polym 149:217–223CrossRef
Zurück zum Zitat Barry C (2007) Slick death: oil-spill treatment kills coral. Sci News 172:67CrossRef Barry C (2007) Slick death: oil-spill treatment kills coral. Sci News 172:67CrossRef
Zurück zum Zitat Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef
Zurück zum Zitat Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutjé P (2015a) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802. doi:10.1007/s10570-014-0473-2 CrossRef Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutjé P (2015a) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802. doi:10.​1007/​s10570-014-0473-2 CrossRef
Zurück zum Zitat Delgado-Aguilar M, Tovar IG, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015b) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources 10:5345–5355 Delgado-Aguilar M, Tovar IG, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015b) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources 10:5345–5355
Zurück zum Zitat Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304CrossRef Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304CrossRef
Zurück zum Zitat Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852. doi:10.1007/s10570-015-0807-8 CrossRef Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852. doi:10.​1007/​s10570-015-0807-8 CrossRef
Zurück zum Zitat González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef
Zurück zum Zitat González I, Alcalà M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef González I, Alcalà M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef
Zurück zum Zitat Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23CrossRef Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23CrossRef
Zurück zum Zitat Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRef Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef
Zurück zum Zitat Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959CrossRef Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959CrossRef
Zurück zum Zitat Moura FC, Lago RM (2009) Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl Catal B 90:436–440CrossRef Moura FC, Lago RM (2009) Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl Catal B 90:436–440CrossRef
Zurück zum Zitat Nguyen ST, Feng J, Le NT, Le AT, Hoang N, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391CrossRef Nguyen ST, Feng J, Le NT, Le AT, Hoang N, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391CrossRef
Zurück zum Zitat Nordvik AB, Simmons JL, Bitting KR, Lewis A, Strøm-Kristiansen T (1996) Oil and water separation in marine oil spill clean-up operations. Spill Sci Technol Bull 3:107–122CrossRef Nordvik AB, Simmons JL, Bitting KR, Lewis A, Strøm-Kristiansen T (1996) Oil and water separation in marine oil spill clean-up operations. Spill Sci Technol Bull 3:107–122CrossRef
Zurück zum Zitat Rao AV, Hegde ND, Hirashima H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci 305:124–132CrossRef Rao AV, Hegde ND, Hirashima H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci 305:124–132CrossRef
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
Zurück zum Zitat Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
Zurück zum Zitat Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. doi:10.1021/bm100490s CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. doi:10.​1021/​bm100490s CrossRef
Zurück zum Zitat Sreekala M, George J, Kumaran M, Thomas S (2001) Water-sorption kinetics in oil palm fibers. J Polym Sci Part B Polym Phys 39:1215–1223CrossRef Sreekala M, George J, Kumaran M, Thomas S (2001) Water-sorption kinetics in oil palm fibers. J Polym Sci Part B Polym Phys 39:1215–1223CrossRef
Zurück zum Zitat Tarrés Q, Saguer E, Pèlach MA, Alcalà M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23:1433–1445. doi:10.1007/s10570-016-0889-y CrossRef Tarrés Q, Saguer E, Pèlach MA, Alcalà M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23:1433–1445. doi:10.​1007/​s10570-016-0889-y CrossRef
Zurück zum Zitat Teal JM, Howarth RW (1984) Oil spill studies: a review of ecological effects. Environ Manag 8:27–43CrossRef Teal JM, Howarth RW (1984) Oil spill studies: a review of ecological effects. Environ Manag 8:27–43CrossRef
Zurück zum Zitat Yan Y et al (2016) Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose 23(2):1189–1197CrossRef Yan Y et al (2016) Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose 23(2):1189–1197CrossRef
Zurück zum Zitat Yang Q, Saito T, Isogai A (2012) Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19:1913–1921CrossRef Yang Q, Saito T, Isogai A (2012) Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19:1913–1921CrossRef
Zurück zum Zitat Yang Q, Takeuchi M, Saito T, Isogai A (2014) Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 30:8109–8118CrossRef Yang Q, Takeuchi M, Saito T, Isogai A (2014) Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 30:8109–8118CrossRef
Zurück zum Zitat Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef
Zurück zum Zitat Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
Metadaten
Titel
Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal
verfasst von
Quim Tarrés
Helena Oliver-Ortega
Miquel Llop
M. Àngels Pèlach
Marc Delgado-Aguilar
Pere Mutjé
Publikationsdatum
20.07.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1017-8

Weitere Artikel der Ausgabe 5/2016

Cellulose 5/2016 Zur Ausgabe