Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2015

01.01.2015

Effective Fatigue Stress and Criterion for High-Cycle Multi-axial Fatigue

verfasst von: Xiaojing Cai, Jinquan Xu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-axial fatigue criterion corresponding to the limiting condition of complicated multi-axial stress state is very important in application. Stresses and deformations are usually elastic if cyclic loadings are near to the limiting condition. A definition of effective fatigue stress has been proposed. Adopting the effective fatigue stress, a multi-axial fatigue criterion has been proposed by considering the equivalence of multi-axial stresses to a uni-axial problem. To clarify the fatigue criterion for a uni-axial problem with arbitrary mean stress, a quantitative relationship between fatigue limit and mean stress has also been proposed and examined. To verify the multi-axial fatigue criterion, examinations have been carried out for the cases of pure shear, shear and axial, and two-axial fatigue by experimental results. It is found that the criterion agrees well with experimental results, even for the cases with various multi-axial mean stresses and phase differences. It is also found that the shear fatigue limit is not an independent material property in common metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D.L. McDiarmid, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1991, 14(4), p 429–453CrossRef D.L. McDiarmid, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1991, 14(4), p 429–453CrossRef
2.
Zurück zum Zitat A. Spagnoli, A New High-Cycle Fatigue Criterion Applied to Out-of-Phase Biaxial Stress State, Int. J. Mech. Sci., 2001, 43, p 2581–2595CrossRef A. Spagnoli, A New High-Cycle Fatigue Criterion Applied to Out-of-Phase Biaxial Stress State, Int. J. Mech. Sci., 2001, 43, p 2581–2595CrossRef
3.
Zurück zum Zitat I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippin, and A. Bernasconi, A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals, Int. J. Fatigue, 1997, 19(3), p 219–235CrossRef I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippin, and A. Bernasconi, A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals, Int. J. Fatigue, 1997, 19(3), p 219–235CrossRef
4.
Zurück zum Zitat D. Ninic, A Stress-Based Multiaxial High-Cycle Fatigue Damage Criterion, Int. J. Fatigue, 2006, 28, p 103–113CrossRef D. Ninic, A Stress-Based Multiaxial High-Cycle Fatigue Damage Criterion, Int. J. Fatigue, 2006, 28, p 103–113CrossRef
5.
Zurück zum Zitat T. Billaudeau, Y. Nadot, and G. Bezine, Multiaxial Fatigue Limit for Defective Materials: Mechanisms and Experiments, Acta Mater., 2004, 52, p 3911–3920CrossRef T. Billaudeau, Y. Nadot, and G. Bezine, Multiaxial Fatigue Limit for Defective Materials: Mechanisms and Experiments, Acta Mater., 2004, 52, p 3911–3920CrossRef
6.
Zurück zum Zitat Y.M. Liu and S. Mahadevan, A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials, Int. J. Fatigue, 2007, 29, p 347–359CrossRef Y.M. Liu and S. Mahadevan, A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials, Int. J. Fatigue, 2007, 29, p 347–359CrossRef
7.
Zurück zum Zitat A. Nieslony and M. Bohm, Mean Stress Effect Correction Using Constant Stress Ratio S-N Curves, Int. J. Fatigue, 2013, 52(7), p 49–56CrossRef A. Nieslony and M. Bohm, Mean Stress Effect Correction Using Constant Stress Ratio S-N Curves, Int. J. Fatigue, 2013, 52(7), p 49–56CrossRef
8.
Zurück zum Zitat Y. Furuya and T. Abe, Effect of Mean Stress on Fatigue Properties of 1800 MPa-Class Spring Steels, Mater. Des., 2011, 32(3), p 1101–1107CrossRef Y. Furuya and T. Abe, Effect of Mean Stress on Fatigue Properties of 1800 MPa-Class Spring Steels, Mater. Des., 2011, 32(3), p 1101–1107CrossRef
9.
Zurück zum Zitat S. Kovacs, T. Beck, and L. Singheiser, Influence of Mean Stresses on Fatigue Life and Damage of a Turbine Blade Steel in the VHCF-Regime, Int. J. Fatigue, 2013, 49(4), p 90–99CrossRef S. Kovacs, T. Beck, and L. Singheiser, Influence of Mean Stresses on Fatigue Life and Damage of a Turbine Blade Steel in the VHCF-Regime, Int. J. Fatigue, 2013, 49(4), p 90–99CrossRef
10.
Zurück zum Zitat K. Kluger and T. Łagoda, New Energy Model for Fatigue Life Determination Under Multiaxial Loading with Different Mean Values, Int. J. Fatigue, 2014, 66, p 229–245CrossRef K. Kluger and T. Łagoda, New Energy Model for Fatigue Life Determination Under Multiaxial Loading with Different Mean Values, Int. J. Fatigue, 2014, 66, p 229–245CrossRef
11.
Zurück zum Zitat I. Koutiri, D. Bellett, F. Morel, and E. Pessard, A Probabilistic Model for the High Cycle Fatigue Behaviour of Cast Aluminium Alloys Subject to Complex Loads, Int. J. Fatigue, 2013, 47, p 137–147CrossRef I. Koutiri, D. Bellett, F. Morel, and E. Pessard, A Probabilistic Model for the High Cycle Fatigue Behaviour of Cast Aluminium Alloys Subject to Complex Loads, Int. J. Fatigue, 2013, 47, p 137–147CrossRef
12.
Zurück zum Zitat J.P. Strizak and L.K. Mansur, The Effect of Mean Stress on the Fatigue Behavior of 316 LN Stainless Steel in Air and Mercury, J. Nucl. Mater., 2003, 318, p 151–156CrossRef J.P. Strizak and L.K. Mansur, The Effect of Mean Stress on the Fatigue Behavior of 316 LN Stainless Steel in Air and Mercury, J. Nucl. Mater., 2003, 318, p 151–156CrossRef
13.
Zurück zum Zitat S.K. Giri and D. Bhattacharjee, Fatigue Behavior of Thin Sheets of DP590 Dual-Phase Steel, J. Mater. Eng. Perform., 2012, 21(6), p 988–994 S.K. Giri and D. Bhattacharjee, Fatigue Behavior of Thin Sheets of DP590 Dual-Phase Steel, J. Mater. Eng. Perform., 2012, 21(6), p 988–994
14.
Zurück zum Zitat T.S. Srivatsan, C. Godbole, T. Quick, M. Paramsothy, and M. Gupta, Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue, J. Mater. Eng. Perform., 2013, 22(2), p 439–453CrossRef T.S. Srivatsan, C. Godbole, T. Quick, M. Paramsothy, and M. Gupta, Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue, J. Mater. Eng. Perform., 2013, 22(2), p 439–453CrossRef
15.
Zurück zum Zitat T.S. Srivatsan, K. Manigandan, S. Sastry, T. Quick, and M.L. Schmidt, Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension, J. Mater. Eng. Perform., 2014, 23(1), p 198–212CrossRef T.S. Srivatsan, K. Manigandan, S. Sastry, T. Quick, and M.L. Schmidt, Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension, J. Mater. Eng. Perform., 2014, 23(1), p 198–212CrossRef
16.
Zurück zum Zitat C.Q. Sun, Z.Q. Lei, and Y.S. Hong, Effects of Stress Ratio on Crack Growth Rate and Fatigue Strength for High Cycle and Very-High-Cycle Fatigue of Metallic Materials, Mech. Mater., 2014, 69, p 227–236CrossRef C.Q. Sun, Z.Q. Lei, and Y.S. Hong, Effects of Stress Ratio on Crack Growth Rate and Fatigue Strength for High Cycle and Very-High-Cycle Fatigue of Metallic Materials, Mech. Mater., 2014, 69, p 227–236CrossRef
17.
Zurück zum Zitat L. Susmel, R. Tovo, and P. Lazzarin, The Mean Stress Effect on the High-Cycle Fatigue Strength from a Multiaxial Fatigue Point of View, Int. J. Fatigue, 2005, 27(8), p 928–943CrossRef L. Susmel, R. Tovo, and P. Lazzarin, The Mean Stress Effect on the High-Cycle Fatigue Strength from a Multiaxial Fatigue Point of View, Int. J. Fatigue, 2005, 27(8), p 928–943CrossRef
18.
Zurück zum Zitat K. Genel, Estimation Method for the Fatigue Limit of Case Hardened Steels, Surf. Coat. Technol., 2005, 194(1), p 91–95CrossRef K. Genel, Estimation Method for the Fatigue Limit of Case Hardened Steels, Surf. Coat. Technol., 2005, 194(1), p 91–95CrossRef
19.
Zurück zum Zitat Z.T. Gao, X.T. Jiang, and J.J. Xiong, Data Processing and Test Design of Fatigue Properties, Beijing University of Aeronautics and Astronautics Press, Beijing, 1999 (in Chinese) Z.T. Gao, X.T. Jiang, and J.J. Xiong, Data Processing and Test Design of Fatigue Properties, Beijing University of Aeronautics and Astronautics Press, Beijing, 1999 (in Chinese)
20.
Zurück zum Zitat B.R. You and S.B. Lee, A Critical Review on Multiaxial Fatigue Assessments of Metals, Int. J. Fatigue, 1996, 18(4), p 235–244CrossRef B.R. You and S.B. Lee, A Critical Review on Multiaxial Fatigue Assessments of Metals, Int. J. Fatigue, 1996, 18(4), p 235–244CrossRef
21.
Zurück zum Zitat E. Macha and C.M. Sonsino, Energy Criteria of Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1999, 22(12), p 1053–1070CrossRef E. Macha and C.M. Sonsino, Energy Criteria of Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1999, 22(12), p 1053–1070CrossRef
22.
Zurück zum Zitat Y.Y. Wang and W.X. Yao, Evaluation and Comparison of Several Multiaxial Fatigue Criteria, Int. J. Fatigue, 2004, 26(1), p 17–25CrossRef Y.Y. Wang and W.X. Yao, Evaluation and Comparison of Several Multiaxial Fatigue Criteria, Int. J. Fatigue, 2004, 26(1), p 17–25CrossRef
23.
Zurück zum Zitat Y.S. Garud, Multiaxial Fatigue—A Survey of the State of the Art, J. Test. Eval., 1981, 9, p 165–178 Y.S. Garud, Multiaxial Fatigue—A Survey of the State of the Art, J. Test. Eval., 1981, 9, p 165–178
24.
Zurück zum Zitat H. Zenner, A. Simbürger, and J. Liu, On the Fatigue Limit of Ductile Metals Under Complex Multiaxial Loading, Int. J. Fatigue, 2000, 22(2), p 137–145CrossRef H. Zenner, A. Simbürger, and J. Liu, On the Fatigue Limit of Ductile Metals Under Complex Multiaxial Loading, Int. J. Fatigue, 2000, 22(2), p 137–145CrossRef
25.
Zurück zum Zitat N.S. Ottosen, R. Stenström, and M. Ristinmaa, Continuum Approach to High-Cycle Fatigue Modeling, Int. J. Fatigue, 2008, 30(6), p 996–1006CrossRef N.S. Ottosen, R. Stenström, and M. Ristinmaa, Continuum Approach to High-Cycle Fatigue Modeling, Int. J. Fatigue, 2008, 30(6), p 996–1006CrossRef
26.
Zurück zum Zitat E. Macha and A. Niesłony, Critical Plane Fatigue Life Models of Materials and Structures Under Multiaxial Stationary Random Loading: The State-of-the-Art in Opole Research Centre CESTI, and Directions of Future Activities, Int. J. Fatigue, 2012, 39, p 95–102CrossRef E. Macha and A. Niesłony, Critical Plane Fatigue Life Models of Materials and Structures Under Multiaxial Stationary Random Loading: The State-of-the-Art in Opole Research Centre CESTI, and Directions of Future Activities, Int. J. Fatigue, 2012, 39, p 95–102CrossRef
27.
Zurück zum Zitat T. Nishihara and M. Kawamoto, The Strength of Metals Under Combined Bending and Twisting with Phase Difference, Memoirs, College of Engineering, Kyoto, Imperial University, 1945 T. Nishihara and M. Kawamoto, The Strength of Metals Under Combined Bending and Twisting with Phase Difference, Memoirs, College of Engineering, Kyoto, Imperial University, 1945
28.
Zurück zum Zitat B. Li, L. Reis, and M. De Freitas, Comparative Study of Multiaxial Fatigue Damage Models for Ductile Structural Steels and Brittle Materials, Int. J. Fatigue, 2009, 31(11), p 1895–1906CrossRef B. Li, L. Reis, and M. De Freitas, Comparative Study of Multiaxial Fatigue Damage Models for Ductile Structural Steels and Brittle Materials, Int. J. Fatigue, 2009, 31(11), p 1895–1906CrossRef
29.
Zurück zum Zitat C. Froustey and S. Lasserre, Fatigue des aciers sous solicitations combinées, Application à l’acier 30 NCD16, Laboratoire Arts et Metiers d’Etude de la Fatigue, 1988 C. Froustey and S. Lasserre, Fatigue des aciers sous solicitations combinées, Application à l’acier 30 NCD16, Laboratoire Arts et Metiers d’Etude de la Fatigue, 1988
30.
Zurück zum Zitat G. Matsubara and K. Nishio, Multiaxial High-Cycle Fatigue Criterion Considering Crack Initiation and Non-propagation, Int. J. Fatigue, 2013, 47, p 222–231CrossRef G. Matsubara and K. Nishio, Multiaxial High-Cycle Fatigue Criterion Considering Crack Initiation and Non-propagation, Int. J. Fatigue, 2013, 47, p 222–231CrossRef
Metadaten
Titel
Effective Fatigue Stress and Criterion for High-Cycle Multi-axial Fatigue
verfasst von
Xiaojing Cai
Jinquan Xu
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1309-9

Weitere Artikel der Ausgabe 1/2015

Journal of Materials Engineering and Performance 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.