2014 | OriginalPaper | Buchkapitel
Effective Supervised Knowledge Extraction for an mHealth System for Fall Detection
verfasst von : G. Sannino, I. De Falco, G. De Pietro
Erschienen in: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Fall detection is an important task in telemedicine. In this paper an approach based on supervised knowledge extraction is presented. A fall recordings database is analyzed offline and a set of IF...THEN rules is obtained. This way, also selection of the most relev ant features for fall assessment is automatically carried out. The approach is embedded within a real-time mobile monitoring system, and is used to discriminate in real time normal daily activities from falls. If the data collected in real time by wearable sensors of the system allow recognizing a fall, suitable alarms are automatically generated.