Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 21/2018

03.09.2018

Effective use of biomass ash as an ultra-high humidity sensor

verfasst von: Linchao Sun, Azhar Ali Haidry, Zhong Li, Lijuan Xie, Zhe Wang, Qawareer Fatima, Zhengjun Yao

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 21/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper reports a facile, green, cost-effective, and sustainable track to fabricate humidity sensors with superior performance. This frugal way make use of biomass ashes, left by combustion and annealing of natural wood pulp paper, that can emerge as an alternative source of sensing materials. In comparison to other humidity sensors, the optimized humidity sensor based on annealed tissue ash exhibited ultra-high sensitivity of six orders of magnitude (∼106), excellent selectivity (against H2, CO, CH4) and good stability (1–8 weeks) in the range of 15–90% RH at room temperature. Further characterization was carried out to elucidate the sensing mechanism, which includes chemical composition, functional group, crystal structure, surface morphology and elemental composition of the ashes by XRF, FT-IR, XRD, SEM and EDS analysis, respectively. The proposed strategy and fabricated sensors also enable the real-time humidity monitoring in human breath, which demonstrates the feasibility of its practical application ability as a flexible and wearable humidity sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Zhang, Z. Duan, H. Z, M. Ma, Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sens. Actuators B: Chem. 261, 345–353 (2018)CrossRef Y. Zhang, Z. Duan, H. Z, M. Ma, Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sens. Actuators B: Chem. 261, 345–353 (2018)CrossRef
2.
Zurück zum Zitat S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018)CrossRef S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018)CrossRef
3.
Zurück zum Zitat S. Choi, H. Yu, J. Jang et al., Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 14, 1703934 (2018)CrossRef S. Choi, H. Yu, J. Jang et al., Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 14, 1703934 (2018)CrossRef
4.
Zurück zum Zitat T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, T. Zhang, Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4, 1600404 (2017)CrossRef T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, T. Zhang, Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4, 1600404 (2017)CrossRef
5.
Zurück zum Zitat Z. Li, A.A. Haidry, B. Gao, T. Wang, Z.J. Yao, The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 412, 638–647 (2017)CrossRef Z. Li, A.A. Haidry, B. Gao, T. Wang, Z.J. Yao, The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 412, 638–647 (2017)CrossRef
6.
Zurück zum Zitat L. Sun, A.A. Haidry, Q. Fatima, Z. Li, Z. Yao, Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater. Res. Bull. 99, 124–131 (2018)CrossRef L. Sun, A.A. Haidry, Q. Fatima, Z. Li, Z. Yao, Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater. Res. Bull. 99, 124–131 (2018)CrossRef
7.
Zurück zum Zitat X. Liu, Y. Wen, B. Shan, K. Cho, Z. Chen, R. Chen, Combined effects of defects and hydroxyl groups on the electronic transport properties of reduced graphene oxide. Appl. Phys. A 118, 885–892 (2015)CrossRef X. Liu, Y. Wen, B. Shan, K. Cho, Z. Chen, R. Chen, Combined effects of defects and hydroxyl groups on the electronic transport properties of reduced graphene oxide. Appl. Phys. A 118, 885–892 (2015)CrossRef
8.
Zurück zum Zitat Y.T. Lai, J.C. Kuo, Y.J. Yang, A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators B 215, 83–88 (2014)CrossRef Y.T. Lai, J.C. Kuo, Y.J. Yang, A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators B 215, 83–88 (2014)CrossRef
9.
Zurück zum Zitat P. Su, C. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate. Sens. Actuators B 200, 9–18 (2014)CrossRef P. Su, C. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate. Sens. Actuators B 200, 9–18 (2014)CrossRef
10.
Zurück zum Zitat F. Qian, P.C. Lan, M.C. Freyman et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 17, 7171–7176 (2017)CrossRef F. Qian, P.C. Lan, M.C. Freyman et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 17, 7171–7176 (2017)CrossRef
11.
Zurück zum Zitat N.S. Trivedi, S.A. Mandavgane, B.D. SayajiMehetre, Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRef N.S. Trivedi, S.A. Mandavgane, B.D. SayajiMehetre, Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRef
12.
Zurück zum Zitat R. Abraham, J. George, J. Thomas, K.K.M. Yusuff, Physicochemical characterization and possible applications of the waste biomass ash from oleoresin industries of India. Fuel 109, 366–372 (2013)CrossRef R. Abraham, J. George, J. Thomas, K.K.M. Yusuff, Physicochemical characterization and possible applications of the waste biomass ash from oleoresin industries of India. Fuel 109, 366–372 (2013)CrossRef
13.
Zurück zum Zitat E. Romero, M. Quirantes, R. Nogales, Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208, 1–9 (2017)CrossRef E. Romero, M. Quirantes, R. Nogales, Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208, 1–9 (2017)CrossRef
14.
Zurück zum Zitat G. Pathak, D. Das, K. Rajkumari, L. Rokhum, Exploiting waste: towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem. 20, 2365–2373 (2018)CrossRef G. Pathak, D. Das, K. Rajkumari, L. Rokhum, Exploiting waste: towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem. 20, 2365–2373 (2018)CrossRef
16.
Zurück zum Zitat A.A. Haidry, L. Sun, B. Saruhan, A. Plecenik, T. Plecenik, H. Shen, Z. Yao, Cost-effective fabrication of polycrystalline TiO2 with tunable n/p conductivity for selective hydrogen monitoring. Sens. Actuators B 274, 10–21 (2018)CrossRef A.A. Haidry, L. Sun, B. Saruhan, A. Plecenik, T. Plecenik, H. Shen, Z. Yao, Cost-effective fabrication of polycrystalline TiO2 with tunable n/p conductivity for selective hydrogen monitoring. Sens. Actuators B 274, 10–21 (2018)CrossRef
17.
Zurück zum Zitat F. Suárez-García, A. Martínez-Alonso, M. Fernández Llorente, J.M.D. Tascón, Inorganic matter characterization in vegetable biomass feedstocks. Fuel 81, 1161–1169 (2002)CrossRef F. Suárez-García, A. Martínez-Alonso, M. Fernández Llorente, J.M.D. Tascón, Inorganic matter characterization in vegetable biomass feedstocks. Fuel 81, 1161–1169 (2002)CrossRef
18.
Zurück zum Zitat N.S. Trivedi, S.A. Mandavgane, A. Chaurasia, Characterization and valorization of biomass char: a comparison with biomass ash. Environ. Sci. Pollut. Res. 25, 3458–3467 (2018)CrossRef N.S. Trivedi, S.A. Mandavgane, A. Chaurasia, Characterization and valorization of biomass char: a comparison with biomass ash. Environ. Sci. Pollut. Res. 25, 3458–3467 (2018)CrossRef
19.
Zurück zum Zitat N.S. Trivedi, S.A. Mandavgane, S. Mehetre, B.D. Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRef N.S. Trivedi, S.A. Mandavgane, S. Mehetre, B.D. Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRef
20.
Zurück zum Zitat S. Sangita, N. Nayak, C.R. Panda, Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes. Trans. Nonferrous Met. Soc. China 27, 2082–2089 (2017)CrossRef S. Sangita, N. Nayak, C.R. Panda, Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes. Trans. Nonferrous Met. Soc. China 27, 2082–2089 (2017)CrossRef
21.
Zurück zum Zitat D. Li, J. Zhang, L. Shen, W. Dong, C. Feng, C. Liu, S. Ruan, Humidity sensing properties of SrTiO3 nanospheres with high sensitivity and rapid response. RSC Adv. 5, 22879–22883 (2015)CrossRef D. Li, J. Zhang, L. Shen, W. Dong, C. Feng, C. Liu, S. Ruan, Humidity sensing properties of SrTiO3 nanospheres with high sensitivity and rapid response. RSC Adv. 5, 22879–22883 (2015)CrossRef
22.
Zurück zum Zitat D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film, Sens. Actuators B 266, 52–62 (2018).CrossRef D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film, Sens. Actuators B 266, 52–62 (2018).CrossRef
23.
Zurück zum Zitat T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)CrossRef T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)CrossRef
24.
Zurück zum Zitat Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)CrossRef Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)CrossRef
25.
Zurück zum Zitat Y. Tan, K. Yu, T. Yang, Q. Zhang, W. Cong, H. Yin, Z. Zhang, Y. Chen, Z. Zhu, The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C 2, 5422–5430 (2014)CrossRef Y. Tan, K. Yu, T. Yang, Q. Zhang, W. Cong, H. Yin, Z. Zhang, Y. Chen, Z. Zhu, The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C 2, 5422–5430 (2014)CrossRef
26.
Zurück zum Zitat H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRef H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRef
27.
Zurück zum Zitat H. Singh, V.K. Tomer, N. Jena, I. Bala, N. Sharma, D. Nepak, A.D. Sarkar, K. Kailasam, S.K. Pal, A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 5, 21820–21827 (2017)CrossRef H. Singh, V.K. Tomer, N. Jena, I. Bala, N. Sharma, D. Nepak, A.D. Sarkar, K. Kailasam, S.K. Pal, A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 5, 21820–21827 (2017)CrossRef
28.
Zurück zum Zitat D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)CrossRef D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)CrossRef
29.
Zurück zum Zitat M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, Ultra-sensitive humidity sensors based on ZnSb2O4 nanoparticles. RSC Adv. 5, 2429–2433 (2015)CrossRef M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, Ultra-sensitive humidity sensors based on ZnSb2O4 nanoparticles. RSC Adv. 5, 2429–2433 (2015)CrossRef
Metadaten
Titel
Effective use of biomass ash as an ultra-high humidity sensor
verfasst von
Linchao Sun
Azhar Ali Haidry
Zhong Li
Lijuan Xie
Zhe Wang
Qawareer Fatima
Zhengjun Yao
Publikationsdatum
03.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 21/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9966-3

Weitere Artikel der Ausgabe 21/2018

Journal of Materials Science: Materials in Electronics 21/2018 Zur Ausgabe

Neuer Inhalt