Skip to main content
Erschienen in: Journal of Materials Science 19/2017

05.07.2017 | Chemical routes to materials

Effects of catalysts state on the synthesis of MWCNTs modified expanded graphite through microwave-assisted pyrolysis of ethanol

verfasst von: Ning Liao, Yawei Li, Shengli Jin, Gengfu Liu, Qijin Wan, Shaobai Sang, Dandan Su

Erschienen in: Journal of Materials Science | Ausgabe 19/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-walled carbon nanotubes (MWCNTs) were prepared through microwave-assisted pyrolysis of ethanol to enhance the electron transfer of expanded graphite (EG). Three kinds of Fe-containing catalyst precursors (ferric nitrate, citric acid-enhanced ferric nitrate and ferrocene) were designated in the present work to investigate the influences of catalyst states on the formation of MWCNT. The cyclic voltammograms and electrochemical impedance of the prepared specimens were characterized. Furthermore, the microstructures of catalyst-loaded EG before and after microwave treatment were investigated by means of SEM and TEM. The results show that the growth of MWCNT under microwave treatment is determined by the state of catalyst and only nanoscaled Fe-containing catalysts favor the formation of MWCNT. The ferric nitrate tends to grow up into submicron Fe2O3 particles, which impedes the growth of MWCNT. In comparison, citric acid enhances the dispersion of ferric nitrate, allowing the growth of MWCNT. Ferrocene possesses dual functions, namely it assures well distribution of nanoscaled catalysts and is also responsible for the growth of first generation of MWCNT. With the growth of MWCNT on EG, the anodic peak current densities and charge transfer resistance of the MWCNT modified EG outperform those of pure EG remarkably.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li JH, Da HF, Liu Q, Liu SF (2006) Preparation of sulfur-free expanded graphite with 320 μm mesh of flake graphite. Mater Lett 60:3927–3930CrossRef Li JH, Da HF, Liu Q, Liu SF (2006) Preparation of sulfur-free expanded graphite with 320 μm mesh of flake graphite. Mater Lett 60:3927–3930CrossRef
2.
Zurück zum Zitat Chen MJ, Lou BY, Ni ZJ, Xu B (2015) Pt Co nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell. Electrochim Acta 165:105–109CrossRef Chen MJ, Lou BY, Ni ZJ, Xu B (2015) Pt Co nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell. Electrochim Acta 165:105–109CrossRef
3.
Zurück zum Zitat Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334:50–57CrossRef Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334:50–57CrossRef
4.
Zurück zum Zitat Celzard A, Krzesiñska M, Bégin D, MarêchéJ F, Puricelli S, Furdin G (2002) Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon 40:557–566CrossRef Celzard A, Krzesiñska M, Bégin D, MarêchéJ F, Puricelli S, Furdin G (2002) Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon 40:557–566CrossRef
5.
Zurück zum Zitat Shen WC, Wen SZ, Cao NZ, Zheng L, Zhou W, Liu YJ et al (1999) Expanded graphite—a new kind of biomedical material. Carbon 37:351–358CrossRef Shen WC, Wen SZ, Cao NZ, Zheng L, Zhou W, Liu YJ et al (1999) Expanded graphite—a new kind of biomedical material. Carbon 37:351–358CrossRef
6.
Zurück zum Zitat Kang FY, Zheng YP, Zhao H, Wang HN (2003) Sorption of heavy oils and biomedical liquids into exfoliated graphite-research in China. New Carbon Mater 18:161–173 Kang FY, Zheng YP, Zhao H, Wang HN (2003) Sorption of heavy oils and biomedical liquids into exfoliated graphite-research in China. New Carbon Mater 18:161–173
7.
Zurück zum Zitat Toyoda M, Inagaki M (2000) Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38:199–210CrossRef Toyoda M, Inagaki M (2000) Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38:199–210CrossRef
8.
Zurück zum Zitat Balachandran NA, Philip K, Rani J (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49:247–260CrossRef Balachandran NA, Philip K, Rani J (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49:247–260CrossRef
9.
Zurück zum Zitat Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly (lactic acid). Polym Degrad Stab 95:1063–1076CrossRef Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly (lactic acid). Polym Degrad Stab 95:1063–1076CrossRef
10.
Zurück zum Zitat Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673CrossRef Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673CrossRef
11.
Zurück zum Zitat Wanga LL, Zhang LQ, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276:85–93CrossRef Wanga LL, Zhang LQ, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276:85–93CrossRef
12.
Zurück zum Zitat Behera SK, Mishra B (2015) Strengthening of Al2O3–C slide gate plate refractories with expanded graphite. Ceram Int 41:4254–4259CrossRef Behera SK, Mishra B (2015) Strengthening of Al2O3–C slide gate plate refractories with expanded graphite. Ceram Int 41:4254–4259CrossRef
13.
Zurück zum Zitat Wang QH, Li YW, Sang SB, Jin SL (2015) Effect of the reactivity and porous structure of expanded graphite (eg) on microstructure and properties of Al2O3–C refractories. J Alloys Compd 645:388–397CrossRef Wang QH, Li YW, Sang SB, Jin SL (2015) Effect of the reactivity and porous structure of expanded graphite (eg) on microstructure and properties of Al2O3–C refractories. J Alloys Compd 645:388–397CrossRef
14.
Zurück zum Zitat Zhu TB, Li YW, Jin SL, Sang SB, Wang QH, Zhao L et al (2013) Microstructure and mechanical properties of MgO–C refractories containing expanded graphite. Ceram Int 39:4529–4537CrossRef Zhu TB, Li YW, Jin SL, Sang SB, Wang QH, Zhao L et al (2013) Microstructure and mechanical properties of MgO–C refractories containing expanded graphite. Ceram Int 39:4529–4537CrossRef
15.
Zurück zum Zitat Mahato S, Pratihar SK, Behera SK (2014) Fabrication and properties of MgO–C refractories improved with expanded graphite. Ceram Int 40:16535–16542CrossRef Mahato S, Pratihar SK, Behera SK (2014) Fabrication and properties of MgO–C refractories improved with expanded graphite. Ceram Int 40:16535–16542CrossRef
16.
Zurück zum Zitat Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A 56:181–191CrossRef Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A 56:181–191CrossRef
17.
Zurück zum Zitat Yang SY, Chang KH, Lee YF, Ma CCM, Hu CC (2010) Constructing a hierarchical graphene–carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters. Electrochem Commun 12:1206–1209CrossRef Yang SY, Chang KH, Lee YF, Ma CCM, Hu CC (2010) Constructing a hierarchical graphene–carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters. Electrochem Commun 12:1206–1209CrossRef
18.
Zurück zum Zitat Wang HL, Kakade BA, Tamaki T, Yamaguchi T (2014) Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J Power Sources 260:338–348CrossRef Wang HL, Kakade BA, Tamaki T, Yamaguchi T (2014) Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J Power Sources 260:338–348CrossRef
19.
Zurück zum Zitat Zhong C, Wang JZ, Wexler D, Liu HK (2014) Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon 66:637–645CrossRef Zhong C, Wang JZ, Wexler D, Liu HK (2014) Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon 66:637–645CrossRef
20.
Zurück zum Zitat Cui XY, Lv RT, Sagar RUR, Liu C, Zhang ZJ (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350CrossRef Cui XY, Lv RT, Sagar RUR, Liu C, Zhang ZJ (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350CrossRef
21.
Zurück zum Zitat Yen MY, Hsiao MC, Liao SH, Liu PI, Tsai HM, Ma CCM et al (2011) Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49:3597–3606CrossRef Yen MY, Hsiao MC, Liao SH, Liu PI, Tsai HM, Ma CCM et al (2011) Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49:3597–3606CrossRef
22.
Zurück zum Zitat Singh AP, Mishra M, Hashim DP, Narayanan TN, Hahm MG, Kumar P et al (2015) Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85:79–88CrossRef Singh AP, Mishra M, Hashim DP, Narayanan TN, Hahm MG, Kumar P et al (2015) Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85:79–88CrossRef
23.
Zurück zum Zitat Zhao JG, Guo QG, Shi JL, Liu L, Jia JS, Liu YC et al (2009) Carbon nanotube growth in the pores of expanded graphite by chemical vapor deposition. Carbon 47:1747–1751CrossRef Zhao JG, Guo QG, Shi JL, Liu L, Jia JS, Liu YC et al (2009) Carbon nanotube growth in the pores of expanded graphite by chemical vapor deposition. Carbon 47:1747–1751CrossRef
24.
Zurück zum Zitat Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. J Adv Mater 22:3723–3728CrossRef Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. J Adv Mater 22:3723–3728CrossRef
25.
Zurück zum Zitat Kim YS, Kumar K, Fisher FT, Yang EH (2011) Out-of-plane growth of CNT on graphene for supercapacitor applications. Nanotechnology 23(1):015301CrossRef Kim YS, Kumar K, Fisher FT, Yang EH (2011) Out-of-plane growth of CNT on graphene for supercapacitor applications. Nanotechnology 23(1):015301CrossRef
26.
Zurück zum Zitat Jhan JY, Huang YW, Hsu CH, Teng HS, Kuo D, Kuo PL (2013) Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells. Energy 53:282–287CrossRef Jhan JY, Huang YW, Hsu CH, Teng HS, Kuo D, Kuo PL (2013) Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells. Energy 53:282–287CrossRef
27.
Zurück zum Zitat Feng W, Qin MM, Lv P, Li JP, Feng YY (2014) A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 77:1054–1064CrossRef Feng W, Qin MM, Lv P, Li JP, Feng YY (2014) A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 77:1054–1064CrossRef
28.
Zurück zum Zitat Zhao Y, Shi JL, Wang HQ, Tao ZC, Liu ZJ, Guo QG et al (2013) A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in situ grown carbon nanotubes. Carbon 51:427–434CrossRef Zhao Y, Shi JL, Wang HQ, Tao ZC, Liu ZJ, Guo QG et al (2013) A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in situ grown carbon nanotubes. Carbon 51:427–434CrossRef
29.
Zurück zum Zitat Wen J, Li YT, Yang W (2014) Facile fabrication of three-dimensional graphene/carbon nanotube sandwich structures. Vacuum 101:271–274CrossRef Wen J, Li YT, Yang W (2014) Facile fabrication of three-dimensional graphene/carbon nanotube sandwich structures. Vacuum 101:271–274CrossRef
30.
Zurück zum Zitat Fu DJ, Zeng XR, Zou JZ, Qian HX, Li XH, Xiong XB (2009) Direct synthesis of Y-junction carbon nanotubes by microwave-assisted pyrolysis of methane. Mater Chem Phys 118:501–505CrossRef Fu DJ, Zeng XR, Zou JZ, Qian HX, Li XH, Xiong XB (2009) Direct synthesis of Y-junction carbon nanotubes by microwave-assisted pyrolysis of methane. Mater Chem Phys 118:501–505CrossRef
31.
Zurück zum Zitat Fu DJ, Ma Q, Zeng XR, Chen JJ, Zhang WL, Li DS (2013) Synthesis and magnetic properties of aligned carbon nanotubes by microwave-assisted pyrolysis of acetylene. Phys E 54:185–190CrossRef Fu DJ, Ma Q, Zeng XR, Chen JJ, Zhang WL, Li DS (2013) Synthesis and magnetic properties of aligned carbon nanotubes by microwave-assisted pyrolysis of acetylene. Phys E 54:185–190CrossRef
32.
Zurück zum Zitat Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS, Ganesan P (2014) Single stage production of carbon nanotubes using microwave technology. Diam Relat Mater 48:52–59CrossRef Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS, Ganesan P (2014) Single stage production of carbon nanotubes using microwave technology. Diam Relat Mater 48:52–59CrossRef
33.
Zurück zum Zitat Sridhar V, Kim HJ, Jung JH, Lee CG, Park S, Oh IK (2012) Defect-engineered three-dimensional graphene nanotube palladium nanostructures with ultrahigh capacitance. ASC NANO 6:10562–10570CrossRef Sridhar V, Kim HJ, Jung JH, Lee CG, Park S, Oh IK (2012) Defect-engineered three-dimensional graphene nanotube palladium nanostructures with ultrahigh capacitance. ASC NANO 6:10562–10570CrossRef
34.
Zurück zum Zitat Sridhar V, Lee SH, Kim WJ, Oh IK (2013) Arsenic removal from contaminated water using three-dimensional graphene–carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47:10510–10517 Sridhar V, Lee SH, Kim WJ, Oh IK (2013) Arsenic removal from contaminated water using three-dimensional graphene–carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47:10510–10517
35.
Zurück zum Zitat Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R et al (2013) Graphene nanotube iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251CrossRef Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R et al (2013) Graphene nanotube iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251CrossRef
36.
Zurück zum Zitat Sridhar V, Lee I, Chun HH, Park H (2015) Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon 87:186–192CrossRef Sridhar V, Lee I, Chun HH, Park H (2015) Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon 87:186–192CrossRef
37.
Zurück zum Zitat Zhao JG, Guo XY, Guo QG, Gu L, Guo Y, Feng F (2011) Growth of carbon nanotubes on natural organic precursors by chemical vapor deposition. Carbon 49(6):2155–2158CrossRef Zhao JG, Guo XY, Guo QG, Gu L, Guo Y, Feng F (2011) Growth of carbon nanotubes on natural organic precursors by chemical vapor deposition. Carbon 49(6):2155–2158CrossRef
38.
Zurück zum Zitat Danafar F, Fakhru’l-Razi A, Salleh MAM, Biak DRA (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—a review. Chem Eng J 155(1):37–48CrossRef Danafar F, Fakhru’l-Razi A, Salleh MAM, Biak DRA (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—a review. Chem Eng J 155(1):37–48CrossRef
39.
Zurück zum Zitat Dunens OM, MacKenzie KJ, Harris AT (2009) Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environ Sci Technol 43(20):7889–7894CrossRef Dunens OM, MacKenzie KJ, Harris AT (2009) Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environ Sci Technol 43(20):7889–7894CrossRef
40.
Zurück zum Zitat Zhang Q, Zhao MQ, Huang JQ, Liu Y, Wang Y, Qian WZ et al (2009) Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition. Carbon 47(11):2600–2610CrossRef Zhang Q, Zhao MQ, Huang JQ, Liu Y, Wang Y, Qian WZ et al (2009) Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition. Carbon 47(11):2600–2610CrossRef
41.
Zurück zum Zitat Baddour CE, Upham DC, Meunier JL (2010) Direct and repetitive growth cycles of carbon nanotubes on stainless steel particles by chemical vapor deposition in a fluidized bed. Carbon 48(9):2652–2656CrossRef Baddour CE, Upham DC, Meunier JL (2010) Direct and repetitive growth cycles of carbon nanotubes on stainless steel particles by chemical vapor deposition in a fluidized bed. Carbon 48(9):2652–2656CrossRef
42.
Zurück zum Zitat Wang G, Wang H, Li WL, Ren ZY, Bai JT, Bai JB (2011) Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts. Fuel Process Technol 92:531–540CrossRef Wang G, Wang H, Li WL, Ren ZY, Bai JT, Bai JB (2011) Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts. Fuel Process Technol 92:531–540CrossRef
43.
Zurück zum Zitat Palacio R, Gallego J, Gabelica Z, Batiot-Dupeyrat C, Barrault J, Valange S (2015) Decomposition of ethanol into H2-rich gas and carbon nanotubes over Ni, Co and Fe supported on SBA-15 and Aerosil. Appl Catal A 03:642–653CrossRef Palacio R, Gallego J, Gabelica Z, Batiot-Dupeyrat C, Barrault J, Valange S (2015) Decomposition of ethanol into H2-rich gas and carbon nanotubes over Ni, Co and Fe supported on SBA-15 and Aerosil. Appl Catal A 03:642–653CrossRef
44.
Zurück zum Zitat Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K et al (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth Met 121:1195–1196CrossRef Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K et al (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth Met 121:1195–1196CrossRef
45.
Zurück zum Zitat Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef
46.
Zurück zum Zitat Cao LL, Li ZQ, Fan GL, Jiang L, Zhang D, Moon WJ et al (2012) The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50:1057–1062CrossRef Cao LL, Li ZQ, Fan GL, Jiang L, Zhang D, Moon WJ et al (2012) The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50:1057–1062CrossRef
47.
Zurück zum Zitat Wei XH, Zhang JX, Shi JL, Guo QG, Yao LZ (2004) Preparation of sulfur-free highly expanded graphite. New Carbon Mater 19:45–48 Wei XH, Zhang JX, Shi JL, Guo QG, Yao LZ (2004) Preparation of sulfur-free highly expanded graphite. New Carbon Mater 19:45–48
48.
Zurück zum Zitat Zhu JT, Jia JC, Kwong FL, Ng DHL (2012) Synthesis of bamboo-like carbon nanotubes on a copper foil by catalytic chemical vapor deposition from ethanol. Carbon 50:2504–2512CrossRef Zhu JT, Jia JC, Kwong FL, Ng DHL (2012) Synthesis of bamboo-like carbon nanotubes on a copper foil by catalytic chemical vapor deposition from ethanol. Carbon 50:2504–2512CrossRef
49.
Zurück zum Zitat Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York
50.
Zurück zum Zitat Henstridge MC, Dickinson EJF, Aslanoglu M, Batchelor-McAuley C, Compton RG (2010) Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: the oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens Actuators B 145(1):417–427CrossRef Henstridge MC, Dickinson EJF, Aslanoglu M, Batchelor-McAuley C, Compton RG (2010) Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: the oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens Actuators B 145(1):417–427CrossRef
51.
Zurück zum Zitat Sims MJ, Rees NV, Dickinson EJF, Compton RG (2010) Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG). Sens Actuators B 144(1):153–158CrossRef Sims MJ, Rees NV, Dickinson EJF, Compton RG (2010) Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG). Sens Actuators B 144(1):153–158CrossRef
52.
Zurück zum Zitat Jiang BJ, Tian CG, Zhou W, Wang JQ, Xie Y, Pan QJ et al (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chem Eur J 17:8379–8387CrossRef Jiang BJ, Tian CG, Zhou W, Wang JQ, Xie Y, Pan QJ et al (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chem Eur J 17:8379–8387CrossRef
53.
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
54.
Zurück zum Zitat Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef
55.
Zurück zum Zitat Wu XL, Yue T, Lu RR, Zhu DZ, Zhu ZY (2005) Hydrothermal-assisted functionalization, FTIR, Raman and XPS spectra characterization of carbon nanotubes. Spectrosc Spectr Anal 25:1595–1598 Wu XL, Yue T, Lu RR, Zhu DZ, Zhu ZY (2005) Hydrothermal-assisted functionalization, FTIR, Raman and XPS spectra characterization of carbon nanotubes. Spectrosc Spectr Anal 25:1595–1598
56.
Zurück zum Zitat Zhao W, Kong Y, Kam JQ, Chen ZD (2009) Fabrication of expanded graphite electrode and its application in electrochemical detection of tryptophan. Chin J Anal Chem 1:62–66 Zhao W, Kong Y, Kam JQ, Chen ZD (2009) Fabrication of expanded graphite electrode and its application in electrochemical detection of tryptophan. Chin J Anal Chem 1:62–66
57.
Zurück zum Zitat Liu XF, Mi CH, Zhang WQ (2014) Preparation and electrochemical lithium storage of 3D α-Fe2O3/nitrogen-doped grapheme/carbon nanotubes nanocomposites. Chin J Inorg Chem 30:242–250 Liu XF, Mi CH, Zhang WQ (2014) Preparation and electrochemical lithium storage of 3D α-Fe2O3/nitrogen-doped grapheme/carbon nanotubes nanocomposites. Chin J Inorg Chem 30:242–250
Metadaten
Titel
Effects of catalysts state on the synthesis of MWCNTs modified expanded graphite through microwave-assisted pyrolysis of ethanol
verfasst von
Ning Liao
Yawei Li
Shengli Jin
Gengfu Liu
Qijin Wan
Shaobai Sang
Dandan Su
Publikationsdatum
05.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1333-x

Weitere Artikel der Ausgabe 19/2017

Journal of Materials Science 19/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.