Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2013

01.04.2013 | Research Paper

Effects of electromechanical resonance on photocatalytic reduction of the free-hanging graphene oxide sheets

verfasst von: F. Ostovari, Y. Abdi, S. Darbari, F. Ghasemi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this report we present a simple, low-temperature method which is compatible with standard technology, to achieve graphene-based devices in large quantity. In this approach we take advantage of photocatalytic behavior of TiO2 to achieve photocatalytic reduction of chemically synthesized graphene oxide (GO) sheets. TiO2 nanoparticles have been deposited on GO sheets hanging from Au/SiO2/Si interdigital electrodes to realize TiO2/GO heterostructures. We investigated photocatalytic activity of TiO2 nanoparticles in the presence of UV-illumination, to reduce the GO sheets. Based on the Raman spectroscopy, the photocatalytic activity of TiO2 nanoparticles resulted in a decrease in the number of C–O bonds. Electrical measurements show that graphene sheets with the controlled electrical conductivity were obtained, so that higher illumination time led to higher conductivity and better reduction of GO sheets. Also, strain-induced photocatalytic reduction of the GO sheets has been investigated by their electrical characteristics. It has been shown for the first time that the electromechanical-induced strain enhances the photocatalytic behavior of the fabricated TiO2/GO heterostructure significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdi Y, Arzi E, Mohajerzadeh S (2008a) Effects of plasma power on the growth of carbon nanotubes in the plasma enhanced chemical vapor deposition method. Eur Phys J Appl Phys 44(2):149–153CrossRef Abdi Y, Arzi E, Mohajerzadeh S (2008a) Effects of plasma power on the growth of carbon nanotubes in the plasma enhanced chemical vapor deposition method. Eur Phys J Appl Phys 44(2):149–153CrossRef
Zurück zum Zitat Abdi Y, Mohajerzadeh S, Koohshorkhi J, Robertson MD, Bennett JC (2008b) A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes. Carbon 46(12):1611–1625CrossRef Abdi Y, Mohajerzadeh S, Koohshorkhi J, Robertson MD, Bennett JC (2008b) A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes. Carbon 46(12):1611–1625CrossRef
Zurück zum Zitat Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220CrossRef Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220CrossRef
Zurück zum Zitat Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB et al (2009) Graphene—like nano—sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(5):344–347CrossRef Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB et al (2009) Graphene—like nano—sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(5):344–347CrossRef
Zurück zum Zitat Bao W, Zhang H, Bruck J, Lau CN, Bockrath M, Standley B (2008) Graphene-based atomic-scale switches. Nano Lett 8(10):3345–3349CrossRef Bao W, Zhang H, Bruck J, Lau CN, Bockrath M, Standley B (2008) Graphene-based atomic-scale switches. Nano Lett 8(10):3345–3349CrossRef
Zurück zum Zitat Chen HQ, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561CrossRef Chen HQ, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561CrossRef
Zurück zum Zitat Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4:861–867CrossRef Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4:861–867CrossRef
Zurück zum Zitat Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR (2011) Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23(45):5419–5424CrossRef Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR (2011) Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23(45):5419–5424CrossRef
Zurück zum Zitat Darbari S, Abdi Y, Mohajerzadeh S, Asl Soleimani E (2010) High electron emission from branched tree-like carbon nanotubes suitable for field emission applications. Carbon 48(9):2493–2500CrossRef Darbari S, Abdi Y, Mohajerzadeh S, Asl Soleimani E (2010) High electron emission from branched tree-like carbon nanotubes suitable for field emission applications. Carbon 48(9):2493–2500CrossRef
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRef
Zurück zum Zitat Garcia Sanchez D, van der Zande AM, San Paulo A, Lassagne B, Mc Euen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett 8(5):1399–1403CrossRef Garcia Sanchez D, van der Zande AM, San Paulo A, Lassagne B, Mc Euen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett 8(5):1399–1403CrossRef
Zurück zum Zitat Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398CrossRef Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398CrossRef
Zurück zum Zitat Gomez Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503CrossRef Gomez Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503CrossRef
Zurück zum Zitat Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C et al (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242CrossRef Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C et al (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242CrossRef
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1347CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1347CrossRef
Zurück zum Zitat Jiang Y, Zhang Q, Li F, Niu L (2012) Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sens Actuators B 161:728–733CrossRef Jiang Y, Zhang Q, Li F, Niu L (2012) Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sens Actuators B 161:728–733CrossRef
Zurück zum Zitat Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Int J Nanosci 10(5):559–566CrossRef Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Int J Nanosci 10(5):559–566CrossRef
Zurück zum Zitat Kumar P, Subrahmanyam KS, Rao CNR (2011b) Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene. Mater Express 1(3):252–256CrossRef Kumar P, Subrahmanyam KS, Rao CNR (2011b) Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene. Mater Express 1(3):252–256CrossRef
Zurück zum Zitat Kumar P, Das B, Chitara B, Subrahmanyam KS, Gopalakrishnan K, Krupanidhi SB, Rao CNR (2012) Novel radiation-induced properties of graphene and related materials. Macromol Chem Phys 213(10):1146–1163CrossRef Kumar P, Das B, Chitara B, Subrahmanyam KS, Gopalakrishnan K, Krupanidhi SB, Rao CNR (2012) Novel radiation-induced properties of graphene and related materials. Macromol Chem Phys 213(10):1146–1163CrossRef
Zurück zum Zitat Liang X, Fu Z, Chou SY (2007) Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 7(12):3840–3844CrossRef Liang X, Fu Z, Chou SY (2007) Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 7(12):3840–3844CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
Zurück zum Zitat Peng X, Tang F, Copple A (2012) Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. J Phys Condens Matter 24(7):075501CrossRef Peng X, Tang F, Copple A (2012) Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. J Phys Condens Matter 24(7):075501CrossRef
Zurück zum Zitat Qi JL, Wang X, Zheng WT, Tian HU, Hu CQ, Peng YS (2010) Ar plasma treatment on few layer graphene sheets for enhancing their field emission properties. J Phys D Appl Phys 43(5):055302–055308CrossRef Qi JL, Wang X, Zheng WT, Tian HU, Hu CQ, Peng YS (2010) Ar plasma treatment on few layer graphene sheets for enhancing their field emission properties. J Phys D Appl Phys 43(5):055302–055308CrossRef
Zurück zum Zitat Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Das B, Kumar P, Ghosh A, Late DJ (2010) A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater 11(5):054502(1)–054502(15)CrossRef Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Das B, Kumar P, Ghosh A, Late DJ (2010) A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater 11(5):054502(1)–054502(15)CrossRef
Zurück zum Zitat Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef
Zurück zum Zitat Saikia BK, Boruaha RK, Gogoi PK (2009) A X-ray diffraction analysis on graphene layers of Assam coal. J Chem Sci 121(103):103–106CrossRef Saikia BK, Boruaha RK, Gogoi PK (2009) A X-ray diffraction analysis on graphene layers of Assam coal. J Chem Sci 121(103):103–106CrossRef
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(1):652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(1):652–655CrossRef
Zurück zum Zitat Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera Alonso M, Adamson DH et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera Alonso M, Adamson DH et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539CrossRef
Zurück zum Zitat Stampfer C, Schurtenberger E, Molitor F, Gu ttinger J, Ihn T, Ensslin K (2008) Tunable graphene single electron transistor. Nano Lett 8(8):2378–2383CrossRef Stampfer C, Schurtenberger E, Molitor F, Gu ttinger J, Ihn T, Ensslin K (2008) Tunable graphene single electron transistor. Nano Lett 8(8):2378–2383CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef
Zurück zum Zitat Subrahmanyam KS, Kumar P, Nag A, Rao CNR (2010) Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun 150(37):1774–1777CrossRef Subrahmanyam KS, Kumar P, Nag A, Rao CNR (2010) Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun 150(37):1774–1777CrossRef
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef
Zurück zum Zitat Wang X, Zhi LJ, Tsao N, Tomovic Z, Li JL, Mullen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2990–2992CrossRef Wang X, Zhi LJ, Tsao N, Tomovic Z, Li JL, Mullen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2990–2992CrossRef
Zurück zum Zitat Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798CrossRef Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798CrossRef
Zurück zum Zitat Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef
Zurück zum Zitat Xu T, Zhang L, Cheng H, Zhu Y (2010) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B 101(3):382–387 Xu T, Zhang L, Cheng H, Zhu Y (2010) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B 101(3):382–387
Metadaten
Titel
Effects of electromechanical resonance on photocatalytic reduction of the free-hanging graphene oxide sheets
verfasst von
F. Ostovari
Y. Abdi
S. Darbari
F. Ghasemi
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1551-3

Weitere Artikel der Ausgabe 4/2013

Journal of Nanoparticle Research 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.